

symbolics

4 Program Development
Utilities

Cambridge, Massachusetts

Program Development Utilities
996045

February 1985

This document corresponds to Release 6.0 and later releases.

The software. data, and Information contained herein are proprietary to. and comprise
valuable trade secrets of. Symbolics, Inc. They are given in confidence by Symbolics
pursuant to a written license agreement, and may be used. copied. transmitted, and
stored only in accordance with the terms of such license.

This document may not be reproduced in whole or in part without the prior written
consent of Symbolics, Inc.

Copyright © 1985. 1984. 1983, 1982, 1981. 1980 Symbolics, Inc. All Rights Reserved.
Font Library Copyright © 1984 Bitstream Inc. All Rights Reserved.

Symbolics, Symbolics 3600, Symbolics 3670, Symbolics 3640, SYMBOLlCS-LiSP.
ZETALlSP, MACSYMA, S-GEOMETRY. S-PAINT, and S-RENDER are trademarks of
Symbolics, Inc.

Restricted Rights Legend
Use, duplication. or disclosure by the government Is subject to restrictions as set forth
in subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software Clause
at FAR 52.227-7013.

Text written and produced on Symbolics 3600-family computers by the Documentation
Group of Symbolics. Inc.

Text typography: Century Schoolbook and Helvetica produced on Symbolics 3600-
family computers from Bitstream. Inc., outlines; text masters printed on Symbolics LGP-1
Laser Graphics Printers.
Cover design: Schafer/LaCasse
Cover printer: W.E. Andrews Co .• Inc.
Text printer: ZBR Publications, Inc.

Printed In the USA.

Printing year and number: 87 86 85 9 8 7 6 5 4 3 2 1

iii

February 1985 Program Development Utilities

Table of Contents

Page

I. Program Development Tools and Techniques 1

1. Introduction 3

1.1 Purpose 3
1.2 Prerequisites 3
1.3 Scope 3
1.4 Method 3
1.5 Features 4
1.6 Organization 4

2. Writing and Editing Code 7

2.1 Before You Begin 7
2.1.1 HELP 7
2.1.2 Completion 8

2.2 Getting Started 9
2.2.1 Entering Zmacs 9
2.2.2 Creating a File 9
2.2.3 File Attribute Lists 10
2.2.4 Major and Minor Modes 12

2.3 Program Development: Design and Figure Outline 13
2.3.1 Program Strategy 13
2.3.2 Simple Screen Output 14
2.3.3 Outlining the Figure 16

2.4 Keeping Track of Lisp Syntax 23
2.4.1 Comments 23
2.4.2 Aligning Code 26
2.4.3 Balancing Parentheses 26

2.5 Program Development: Drawing Stripes 27
2.6 Finding Out About Existing Code 35

2.6.1 Objects 35
2.6.2 Symbols 38
2.6.3 Variables 39
2.6.4 Functions 40
2.6.5 Pathnames 45

2.7 Program Development: Refming Stripe Density and Spacing 45
2.8 Editing Code 56

2.8.1 Identifying Changed Code 56
2.8.2 Searching and Replacing 57
2.8.3 Moving Text 59

iv

Proaram Development Utilities February 1985

2.8.4 ~y~ ~acros
2.8.5 Using Multiple Windows

3. Compiling and Evaluating Lisp

3.1 Compiling Lisp Code
3.1.1 Compiling Code in a Zmacs Buffer
3.1.2 Compiling and Loading a File

3.2 Evaluating Lisp Code
3.2.1 Evaluation and the Editor
3.2.2 Lisp Input Editing

4. Debugging Lisp Programs

4.1 The Compiler Warnings Database
4.2 The Debugger
4.3 Commenting Out Code
4.4 Tracing and Stepping

4.4.1 Tracing
4.4.2 Stepping

4.5 Breakpoints
4.6 Expanding Macros
4.7 The Inspector

64
65

69

70
70
73
75
75
77

79

79
80
83
92
92
94
98

100
104

5. Using Flavors and Windows 111

5.1 Program Development: Modifying the Output Module 112
5.1.1 A Moon to Position the Figure 113
5.1.2 The Basic Arrow Window 116
5.1.3 Converting Lgp to Screen Coordinates 121
5.1.4 Flavors for Lgp Output 124
5.1.5 The Top-level Function 126
5.1.6 The Arrow Window: Interaction, Processes, and the Mouse 129
5.1.7 Signalling Conditions 133

5.2 Programming Aids for Flavors and Windows 141
5.2.1 General Information on Flavors 141
5.2.2 Methods 142
5.2.3 Init Keywords 144

6. Calculation Module for the Sample Program 147

7. Output Module for the Sample Program 165

8. Graphic Output of the Sample Program 185

ll. Maintaining Large Programs 187

II

February 1985 Program Development Utilities

9. Introduction to the System Facility

10. Defining a System

189

191

10.1 defsystem Modules 198
10.2 defsystem Transformations 201

10.2.1 Interaction Between defsystem Transformations and 202
make-system

10.2.2 List of defsystem Transformations 209
10.2.3 :skip defsystem Macro 213

10.3 Adding New Options to defsystem 214

1L Loading the System Definition

11.1 Loading System Definitions That Use Logical Pathnames
11.1.1 Sys:site;System-name.System File
11.1.2 Sys:site;Logical-host.Translations File
11.1.3 System Declaration File

11.2 Loading System Definitions That Use Physical Pathnames

12. Making a System

12.1 Adding New Keywords to make-system

13. Patch Facility

13.1 Types of Patch Files
13.1.1 System Version-<iirectory File
13.1.2 Patch Directory File
13.1.3 Individual Patch Files
13.1.4 Organization of Patch Files
13.1.5 Names of Patch Files

13.2 Making Patches
13.2.1 Start Patch (M-X)

13.2.2 Start Private Patch (M-X)

13.2.3 Add Patch (M-X)

13.2.4 Add Patch Changed Definitions of Buffer (M-X)
13.2.5 Add Patch Changed Definitions (M-X)

13.2.6 Select Patch (M-X)
13.2.7 View Patches (M-X)

13.2.8 Finish Patch (M-X)
13.2.9 Abort Patch (M-X)

13.2.10 Resume Patch (M-X)
13.2.11 Recompile Patch (M-X)

13.2.12 Reload Patch (M-X)

217

217
217
218
218
219

221

227

231

233
233
234
235
235
236
238
239
240
240
241
241
242
242
242
243
243
243
244

vi

Program Development Utilities February 1985

13.3 Loading Patches 244

14. Getting Information '~'bout a System 249

15. Functions That Opem'te on a System 251

15.1 Changing the Status of a Patchable System 251

m. Debugger 253

18. Entering the Debugger 255

16.1 Entering the Debugger by Causing an Error 255
16.1.1 Error Display 255

16.2 Entering the Debugger with Pl-SUSPEND 256
16.3 Entering the Debugger with the dbg Function 256

17. How to Use the Debugger 259

17.1 Evaluating a Form in the Debugger 259
17.1.1 Rebound Variable Bindings During Evaluation 260

17.2 Exiting From the Debugger: Abort 261
17.3 Debugger Help 261
17.4 Proceeding From the Error in the Debugger: Resume 262
17.5 Examining the Current Stack Frame in the Debugger 262
17.6 Examining Stack Frames with Debugger Backtrace Commands 262
17.7 Debugger Commands for Stack Manipulation 263
17.8 Debugger Commands That Call Other Systems 264

17.8.1 Entering the Editor From the Debugger 264
17.8.2 Sending a Bug Report 264
17.8.3 Entering the Display Debugger 265

17.9 Debugger Commands for Information Display 265
17.10 Debugger Commands That Trap on Frame Exit 266
17.11 Debugger Commands for Dynamic Breakpoints and Stepping 267

Through Compiled Code
17.12 Debugger Functions 267
17.13 Debugger Variables 268

18. Summary of Debugger Commands 271

19. Summary of Debugging Aids 273

February 1985

20. Tracing Function Execution

20.1 Options to trace
20.2 Controlling the Format of trace Output
20.3 Untracing Function Execution

2L Advising a Function

21.1 Designing the Advice
21.2 :around Advice
21.3 Advising One Function Within Another

22. Stepping Through an Evaluation

23. evalhook

23.1 applyhook

IV. The Inspector

24. Using the Inspector

24.1 How the Inspector Works
24.2 Entering and Leaving the Inspector
24.3 The Inspector Interaction Pane
24.4 The Inspector History Pane
24.5 The Inspector Menu Pane
24.6 The Inspector Inspection Pane

24.6.1 Inspection Pane Display
24.7 Special Characters Recognized by the Inspector
24.8 Examining a Compiled Code File

vii

Program Development Utilities

275

276
279
280

281

283
284
285

287

289

290

293

295

295
295
297
297
298
298
299
300
300

v. The Peek Program 301

25. Peek 303

VI. The Compiler 305

26. Introduction to the Compiler 307

26.1 How to Invoke the Compiler 307

27. Structure of the Compiler 309

27.1 How the Stream Compiler Handles Top-level Forms 310
27.1.1 Controlling the Evaluation of Top-level Forms 314

27.2 Function Compiler 315
27.3 bin File Dumper 316
27.4 Compiler Tools and Their Differences 316

27.4.1 Tools for Compiling Code From the Editor Into Your World 316

viii

Program Development Utilities March 1985

27.4.2 Tools for Compiling Files
27.4.3 Tools for Compiling Single Functions

28. Compiler Warnings Database

317
318

321

29. Controlling Compiler Warnings 323

29.1 Compiler Style Warnings 323
29.2 Function-referenced-but-never-defined Warnings 324

29.2.1 Overriding Variable-defined-but-never-referenced Warnings 326

30. Compiler Source-level Optimizers 327

3L Files That Maclisp Must Compile 329

32. Putting Data in Compiled Code Files 331

Index 333

February 1985

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Figure 5.

Figure 6.

Figure 7.
Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.
Figure 13.
Figure 14.

ix

Program Development Utilities

List of Figures

Program output with only the outlines of the arrows in the figure. 22
Program output with stripes of even spacing and density. 36
Program output with stripes of varying spacing and density. 55
Using multiple windows to test the program while viewing the 67
source code.
Edit Compiler Warnings (r.-X) splits the screen. The upper 81
window contains compiler warnings. The lower window contains
the source code.
The Display Debugger: inspecting the stack frame containing a 84
call to compute-dens.
The Display Debugger: inspecting the variable ~.. 85
Output resulting from a faulty attempt to outline the small arrows 89
recursively.
Output resulting from a faulty attempt to outline the small arrows 90
recursively, with the second function call commented out.
Output resulting from a corrected attempt to outline the small 91
arrows recursively, with the second function call commented out.
Output from the program with a bug in the function 102
draw-arrow-shaft-stripes.
The Inspector window: inspecting an instance of a structure. 106
The Inspector window: inspecting an instance of a flavor. 108
The Inspector. 296

x

Program Development Utilities February 1985

xi

February 1985 Program Development Utilities

List of Tables

Table 1. Trace Menu Items and trace Options 95

xii

Program Development Utilities February 1985

1

February 1985 Program Development Tools and Techniques

PART I.

Program Development Tools and Techniques

2

Program Development Utilities February 1985

3

February 1985 Program Development Tools and Techniques

1. Introduction

1.1 Purpose
In this document we introduce the Lisp programming environment of the Symbolics
Lisp Machine. Using a single example program, we present one style of interacting
with that environment in developing Lisp programs. We do not prescribe a "best"
style of programming on the Symbolics Lisp Machine. Rather, we suggest some
techniques and combinations of features that expert Lisp Machine programmers
advocate. You might find these techniques useful in developing a comfortable and
efficient Lisp Machine programming style of your own.

1.2 Prerequisites

This document is for you if you will be writing or maintaining Lisp programs and
have recently begun to use a Symbolics Lisp Machine. The document will be most
useful if you have some experience writing Lisp programs and are familiar with basic
features of the Symbolics Lisp Machine. The document is not a survey of Symbolics
Lisp Machine facilities, a reference manual, or a Lisp primer. You might find the
following Symbolics publications especially helpful when reading this document:

• See the document User's Guide to Symbolics Computers.

• See the section "Program Development Help Facilities".

1.3 Scope
We focus in this document on interaction between programmers and the Symbolics
Lisp Machine. We present some ways of using Symbolics Lisp Machine features that
you might find helpful at each stage of program development. We mention some
broad issues of style in designing programs, including modularity and efficiency, but
we do not explore program structure in any depth. We do not discuss matters of
style in using Lisp, such as appropriate uses for structures and flavors.

This document corresponds to the Symbolics 3600-family computers.

1.4 Method
We derived the methods we describe here by working with programmers at
Symbolics. Some of these programmers were early developers of the Symbolics Lisp
Machine itself. Their styles vary. Like most programmers, they generally do not
follow a simple textbook sequence of designing, coding, compiling, debugging,
recompiling, testing, and debugging again. Instead, they develop programs in
repeated cycles, each a sequence of editing, compiling, testing, and debugging. These
cycles are often nested. For example, an error in testing a program invokes the
Debugger; from the Debugger the programmer types Lisp forms or calls the editor to
change and recompile code; an error in retesting code from the Debugger invokes the
Debugger again.

4

Program Development Utilities February 1985

1.5 Features

Symbolics developers have designed the Symbolics Lisp Machine to accommodate a
relatively spontaneous and incremental programming style. Five Symbolics Lisp
Machine features make up the integrated programming environment described here.

• The Zetalisp environment. The Lisp system code allows you to write
programs that are extensions of the environment itself. You can
often produce complex programs with comparatively little new code.
Zetalisp flavors let you build data structures with complex modular
combinations of associated procedures and state information.

• The window system. Windows permit you to shift rapidly among
such activities as editing, evaluating Lisp, and debugging. You can.
suspend an activity in one window, switch to another, and return
to the first without losing its state. You can display several
activities on the same screen. Because the window system is itself
implemented with Zetalisp flavors, you can modify or create
windows for special displays.

• The Zmacs text editor. Zmacs has sophisticated means of keeping
track of Lisp syntax. It interacts with the Zetalisp environment,
letting you find out about existing code and incorporate it into your
programs. Unlike some structure editors, Zmacs allows you to leave
definitions incomplete until you are ready to evaluate or compile
them.

• Dynamic compiling, linking, and loading. The compiler is always
loaded. You can use single-keystroke commands to compile and load
source code from a Zmacs buffer. You can write, compile, test, edit,
and recompile code in sections. When you recompile a function
definition, the function's callers use the new definition.

• Interactive debugging. Errors invoke the Debugger in their dynamic
environments. From the Debugger you can examine the stack,
change values of variables and arguments, call the editor to change
and recompile source code, and reinvoke functions.

1.6 Organization

The sequence of steps in developing a program on the Symbolics Lisp Machine is too
complex to mirror in the linear organization of a document. We emphasize the
cyclical course of program development, but we have organized the document in a
simple way. We present the main programming sequence in the next three
chapters. These deal simply with writing and editing, evaluating and compiling, and
debugging code. We discuss particular Zetalisp functions, Zmacs commands, and
other features where they appear most useful or where they present alternatives to
common techniques.

The next three chapters require virtually no knowledge of flavors or the window

5

February 1985 Program Development Tools and Techniques

system. But knowing about flavors and windows is essential to advanced use of the
Symbolics Lisp Machine. For some simple uses of flavors and windows and some
programming aids for working with them: See the section "Using Flavors and
Windows", page 111.

Throughout, we use as an example the development of a single program that draws
the recursive arrows in the cover design for this document. Sandy Schafer and
Bernard LaCasse of SchaferlLaCasse created the original design. Richard Bryan of
Symbolics wrote and we revised a Lisp program that simulates it. For the complete
code: See the section "Calculation Module for the Sample Program", page 147. See
the section "Output Module for the Sample Program", page 165.

The code is also in the files SYS: EXAMPLES; ARROW-CALC LISP and
SYS: EXAMPLES; ARROW-OUT LISP. (To run the program, load
SYS: EXAMPLES; ARROW.) For a reproduction of the design produced on a
Symbolics LGP-1 Laser Graphics Printer: See the section "Graphic Output of the
Sample Program", page 185.

Many of the techniques and facilities we mention are helpful at more than one stage
of program development. Conversely, the Symbolics Lisp Machine provides many
paths for accomplishing tasks at each stage. As programmers at Symbolics gladly
acknowledge, there is more than one way to do almost anything on the Symbolics
Lisp Machine.

In the sections of this document that develop the Lisp code for the example
program, we use change bars to distinguish new or changed code from code that we
have already presented. Whenever we display a line of code that has not appeared
before, and whenever we change a line of code that has already appeared, we place a
vertical bar (I) next to that line in the left margin. This bar is not part of the code
itself. In the following example, we change two lines of the definition of
draw-big-arrow:

(defun draw-big-arrow ()
;; Determine coordinates of arrowhead vertexes
(multiple-value-bind

(*plx* *ply* *p2x* *p2y* *p5x* *p5y* *p6x* *p6y*)
(compute-arrowhead-points)

;; Determine coordinates of shaft vertexes
(multiple-value-bind (*p3x* *p3y* *p4x* *p4y*)

(compute-arrow-shaft-points)
(draw-big-outline) ;Outline arrow
(when *do-the-stripes*

(stripe-arrowhead»») ;Stripe head

6

Program Development Utilities February 1985

7

February 1985 Program Development Tools and Techniques

2. Writing and Editing Code

Symbolics Lisp Machine programmers seldom write programs in sequence, from
beginning to end, before testing them. They often leave defmitions incomplete, skip
to other definitions, and then return to finish the incomplete forms. They search
for existing code to incorporate into new programs. They edit their work frequently,
changing code while writing, testing, and maintaining programs.

In this chapter we discuss Symbolics Lisp Machine features, particularly Zmacs
commands and Zetalisp functions, that make this style natural. Many of these
features are useful at other stages of programming as well: Editing techniques are
important in program maintenance, and methods of learning about existing code are
helpful in debugging.

To illustrate programming methods, we develop a program that draws the recursive
arrow design that appears on the cover of this book. (The program does not draw
the horizontal stripes outside the large arrow.) We produce the figure on a
Symbolics LGP-l Laser Graphics Printer, a Symbolics Lisp Machine screen, or a file.
We develop the program in four stages, beginning with simple procedures to outline
the arrows and progressively modifying the code to refine the figure:

1. Drawing the borders of the large arrow and of the smaller
recursively drawn arrows that it encloses

2. Drawing the diagonal stripes within the figure, but with uniform
thickness and spacing

3. Changing the stripes to vary in thickness and spacing
4. Writing the routines that control the output destination

For the code for the sample program and a reproduction of the LGP image the
program produces: See the section "Calculation Module for the Sample Program",
page 147. See the section "Output Module for the Sample Program", page 165. See
the section "Graphic Output of the Sample Program", page 185.

2.1 Before You Begin

Use the Zmacs text editor to write and edit programs. Zmacs has many features
that provide information about Zmacs commands, existing code, buffers, and files.
Two features are generally useful: the HELP key and completion. For details: See
the section "Program Development Help Facilities".

2.1.1 HELP

Pressing the HELP key in a Zmacs editing window gives information
about Zmacs commands and variables. The kind of information it
displays depends on the key you press after HELP.

Reference
HELP ? or HELP HELP Displays a summary of HELP options.

8

Program Development Utilities February 1985

HELP A

HELP C

HELP D

HELP L

HELP U

HELP V

HELP W

HELP SPACE

2.1.2 Completion

Displays names, key bindings, and brief
descriptions of commands whose names
contain a string you specify. (A refers to
"apropos" .)

Displays the name and brief description of
a command bound to a key you specify.

Displays long documentation for a command
you specify.

Displays a listing of the last 60 keys you
pressed.

Offers to "undo" the last major Zmacs
operation, such as sorting or filling, when
possible.

Displays the names and values of Zmacs
variables whose names contain a string you
specify.

Displays the key binding for a command
you specify. (W refers to "where".)

Repeats the last HELP command.

Some Zmacs operations require you to provide names - for
example, names of extended commands, Lisp objects, buffers, or
files. You usually supply names by typing characters into a
minibuffer that appears near the bottom of the screen. Often you
do not have to type all the characters of a name; Zmacs offers
completion over some name spaces. When completion is available,
the word "Completion" appears in parentheses above the right side
of the minibuffer.

You can request completion when you have typed enough
characters to specify a unique word or name. For extended
commands and most other names, completion works on initial
substrings of each word. For example, m-x com b is sufficie~t to
specify the extended command Compile Buffer. SPACE, COMPLETE,
RETURN, and END complete names in different ways. HELP and
[Zmacs Window (R)] list possible completions for the characters you
have typed.

Reference
SPACE Completes words up to the

current word.

February 1985

HELP or c-?

IZmacs Window (R)]

COMPLETE

RETURN or END

9

Program Development Tools and Techniques

Displays possible completions in
the typeout area.

Pops up a menu of possible
completions.

Displays the full name if possible.

Confirms the name if possible,
whether or not you have seen
the full name.

2.2 Getting Started

When Symbolics programmers begin to write new Lisp programs, they often follow
these steps:

1. Enter the Zmacs editor.
2. Create a buffer for a new file for the program.
3. Set the attributes of the buffer and file, including major and minor

modes.

2.2.1 Entering Zmacs
Use SELECT E, [Edit] from the System menu, or the Select Activity
command to enter Zmacs.

Reference
SELECT E Selects a Zmacs frame.

[Edit] (from the System menu) Selects a Zmacs frame.

Select Activity command Selects a Zmacs frame.

2.2.2 Creating a File
To store program code in a new file, use Find File (c-X c-F) to
create a buffer for the file at the beginning of the editing session.
You can then edit the file's attributes or create an attribute list
that appears in the text. See the section "File Attribute Lists:
Program Development Tools and Techniques", page 10. You will
not have to interrupt later work to name the file or check its
attributes before you save it.

Reference
Find File (c-X c-F) Creates and names a buffer for

the file, reading in the file if it
already exists.

10

Program Development Utilities February 1985

2.2.3 File Attribute Lists
Each buffer and generic pathname has attributes, such as Package
and Base, which can also be displayed in the text of the buffer or
file as an attribute list. An attribute list must be the first
nonblank line of a file, arid it must set off the listing of attributes
on each side with the characters n_._n. If this line appears in a file,
the attributes it specifies are bound to the values in the attribute
list when you read or load the file.

Suppose you want the new program to be part of a package named
graphics that contains graphics programs. In this case, you want
to set the Package attribute to graphics in three places: the
generic pathname's property list; the buffer data structure; and the
buffer text. You can make the change in two ways:

• If the package already exists in your Lisp environment, use Set
Package (M-X) to set the package for the buffer. The command
asks you whether or not to set the package for the file and
attribute list as well. You cannot use this command to create a
new package.

• Use Update Attribute List (M-X) to transfer the current buffer
attributes to the file and create a text attribute list. Edit the
attribute list, changing the package. Use Reparse Attribute List
(M-X) to transfer the attributes in the attribute list to the file and
the buffer data structure. If the package you specify by editing the
attribute list does not exist in your Lisp environment, Reparse
Attribute List asks you whether or not to create it under global.

The default value of base and ibase is 10. If you have been
writing code that has a Base attribute in the mode line, you should
not experience any difficulties. However, in order to help avoid
problems in general, changes have also been made to the editor and
compiler:

• In the mode line (the _.- line in Lisp source files) are the Base and
Syntax attributes. The base can be either 8 or 10 (default). The
syntax of a program can be either Zetalisp or Common-Lisp.

• If there is a Base attribute, but no Syntax attribute, the syntax is
assumed to be Zetalisp.

• If there is a Syntax: Common-Lisp attribute, and no Base attribute,
the base is assumed to be 10.

• If there is neither a Base nor a Syntax attribute, Base is assumed
to be the default base (10) and the syntax is assumed to be
ZetaIisp. Furthermore, a warning is issued to the effect that there

February 1985

11

Program Development Tools and Techniques

is neither a Syntax nor a Base attribute. You should edit your
program accordingly. With most programs, the Zmacs command
Update Attribute List (J'I'I-X) will add the appropriate attributes to
the mode line, following the above defaults.

When you specify a package by editing the attribute list, you can
explicitly name the package's superpackage and, if you want, give
an initial estimate of the number of symbols in the package. (If

the number of symbols exceeds this estimate, the name space
expands automatically.) Instead of typing the name of the package,
type a representation of a list of the form (package superpackage
symbol-count). To indicate that the graphics package is inferior to
global and might contain 1000 symbols, type into the attribute list:

Package: (GRAPHICS GLOBAL 1000)

For more on file and buffer attributes: See the section "File
Attribute Lists" in Reference Guide to Streams, Files, and liD.

Example
Suppose the package for the current buffer is user and the base is
8. We want to create a package called graphics for the buffer and
associated file. We also want to set the base to 10. If no attribute
list exists, we use Update Attribute List (M-X) to create one using
the attributes of the current buffer. An attribute list appears as
the first line of the buffer:

;;; -*- Mode: LISP; Package: USER; Base: 8 -*-

Now we edit the buffer attribute list to change the package
specification from USER to (GRAPHICS GLOBAL 1000) and to change the
base specification from 8 to 10. The text attribute list now appears
as follows:

;;; -*- Mode: LISP; Package: (GRAPHICS GLOBAL 1000); Base: 10 -*-

Finally, we use Reparse Attribute List (J'I'I-x). The package becomes
graphics and the base 10 for the buffer and the fue.

Reference
Set attribute (M-X) Sets attribute for the current

buffer. Queries whether or not
to set attribute for the file and in

12

Program Development Utilities February 1985

the text attribute list. attribute is
one of the following: Backspace,
Base, Fonts, Lowercase, Nofill,
Package, Patch File, Syntax, Tab
Width, or V sp.

Update Attribute List (M-X) Assigns attributes of the current
buffer to the associated file and
the text attribute list.

Reparse Attribute List (M-X) Transfers attributes from the
text attribute list to the buffer
data structure and the associated
fIle.

2.2.4 Major and Minor Modes
Each Zmacs buffer has a major mode that determines how Zmacs
parses the buffer and how some commands operate. Lisp Mode is
best suited to writing and editing Lisp code. In this major mode,
Zmacs parses buffers so that commands to fInd, compile, and
evaluate Lisp code can operate on defInitions and other Lisp
expressions. Other Zmacs commands, including LINE, TAB, and
comment handlers, treat text according to Lisp syntax rules. See
the section "Keeping Track of Lisp Syntax", page 23.

If you name a file with one of the types associated with the
canonical type :lisp, its buffer automatically enters Lisp Mode.
Following are some examples of names of fIles of canonical type
:lisp:

Host system
Lisp Machine
TOPS-20
UNIX

File name
acme-blue: >symbol ics>examples>arrow. lisp
acme-20:(symbolics.examples>arrow.lisp
acme-vax:/symbolics/examples/arrow.1

You can also specify minor modes, including Electric Shift Lock
Mode and Atom Word Mode, that affect alphabetic case and cursor
movement. Whether or not you use these modes is a matter of
personal preference. If you want Lisp Mode to include the~ minor
modes by default, you can set a special variable in an init file. If
you want to exit one of these modes, simply repeat the extended
command. The command acts as a toggle switch for the mode.

Example
The following code in an init fIle makes Lisp Mode include Electric
Shift Lock Mode if the buffer's Lowercase attribute is nil, as it is
by default:

February 1985

13

Program Development Tools and Techniques

(login-forms
(setf zwei:lisp-mode-hook

'zwei:electric-shift-lock-if-appropriate»

Reference
Lisp Mode (M-X)

Electric Shift Lock Mode (M-X)

Atom Word Mode (M-X)

Auto Fill Mode (M-X)

Set Fill Column (c-X F)

Treats text as Lisp code in
parsing buffers and executing
some Zmacs commands.

Places all text except comments
and strings in uppercase.

Makes Zmacs word-manipulation
commands (such as M-F) operate
on Lisp symbol names.

Automatically breaks lines that
extend beyond a preset fill
column.

Sets the fill column to be the
column that represents the
current cursor position. With a
numeric argument less than 200,
sets the fill column to that many
characters. With a larger
numeric argument, sets the fill
column to that many pixels.

2.3 Program Development: Design and Figure Outline

2.3.1 Program Strategy
Our goal in developing the sample program is to reproduce the
pattern of striped arrows on the cover of this document. The
pattern consists of one large arrow enclosing many small arrows
that are similar to each other. Each arrow is a series of line
segments that form either its outline or its stripes.

We have two general problems in writing the program. We must
calculate the position of each line segment we want to draw. We
must also convert these positions into a form that will produce line
segments on the output device we choose.

In solving these problems, we want to adhere to two principles:

• We want the program to be as modular as possible. The routines
that calculate line positions should not depend on the output device

14

Program Development Utifities February 1985

we choose. The routines that translate positions for the output
device should not depend on any particular method of calculating
those positions. If we want to change the internal operation of
either set of routines, we should not have to change the other.

• We want to write the program in an incremental style. We write
the program in stages, producing a working version at each stage.
We start with simple tasks and gradually add refinements until we
are satisfied with what the program accomplishes.

We write the program in two modules, one to calculate line
positions and the other to translate positions for the output
streams. We put these modules in separate files. For the first file:
See the section "Calculation Module for the Sample Program", page
147. For the second file: See the section "Output Module for the
Sample Program", page 165.

How do we send line positions from the module that calculates
them to the module that transmits them to output? The output
module consists of definitions of flavors and methods to transfer
information to the appropriate output stream: See the section
"Using Flavors and Windows", page 111. Streams for LGP and
screen output can both produce lines using the coordinates of the
endpoints. Our module that calculates line positions needs to
compute the coordinates of the endpoints of the lines to be drawn.
In the output module, we define a generic operation called
:show-lines to receive the coordinates from the calculation module
and translate them for the appropriate output stream. The
calculation module sends :show-lines messages to the output
module. We can decide at run time which output stream to use.

Now that we have defined the interface between the two modules,
we could in principle write either module first. Although we want
the position-calculating routines to be independent of the output
device, we have to choose a coordinate system for the calculations.
For ease of interpretation, we place the origin at bottom left. This
is the convention that the system LGP routines use, but the origin
for screen coordinates is at top left. For the sake of convenience,
we calculate positions in units of LGP pixels.

2.3.2 Simple Screen Output
For a discussion of the output routines: See the section "Using
Flavors and Windows", page 111. Eventually, we want to produce
output on the screen, an LGP, or a file. To develop the program,
we need a routine for simple screen display so that we can check
the results of our calculation routines. We can use the stream that

February 1985

15

Program Development Tools and Techniques

is the value of terminal-io. This stream handles :draw-line
messages whose arguments include the coordinates of the endpoints
of the lines to be drawn. For more on :draw-line: See the
method (:method tv:graphics-mixin :draw-line) in Programming
the User Interface.

We first create a source file for the output routine. We defme a
flavor, screen-arrow-output, and a method to handle :show-lines
messages from the calculation routines. The arguments to
:show-lines are the coordinates of the endpoints of one or more
lines to be drawn. If the message has more than four arguments
- the coordinates of two endpoints - we assume that we are to
draw more than one line, each starting at the endpoint of the last.
The :show-lines method must iterate over the arguments of the
message and send tenninal-io a :draw-line message for each line
to be drawn.

We must remember to transform the y-coordinate to take account
of the screen's origin at the top. We must also scale both
coordinates to take account of the LGP's higher resolution: Screen
pixels are about 2.5 times as large as LGP pixels.

The following code provides this simple output module:

(defflavor screen-arrow-output
«scale-factor 2.5»
(»

(defmethod (screen-arrow-output :show-lines)
(x y &rest x-y-pairs)

(loop for xO = (send self ':compute-x x) then xl
for yO = (send self ':compute-y y) then yl
for (xl yl) on x-y-pairs by #'cddr
do (setq xl (send self ':compute-x xl)

yl (send self ':compute-y yl»
(send terminal-io ':draw-line

xO yO xl yl tv:alu-ior t»)

(defmethod (screen-arrow-output :compute-x) (x)
(fixr (II x scale-factor»)

(defmethod (screen-arrow-output :compute-y) (y)
(fixr (- 800 (II y scale-factor»»

16

Program Development Utilities February 1985

2.3.3 Outlining the Figure
We now begin to write the module that calculates the coordinates
of the lines that make up the figure. First we must decide how to
represent the large arrow that encloses the figure and the smaller
arrows inside it. Seven points define each arrow: See the section
"Calculation Module for the Sample Program", page 147.

Each arrow has a head, bounded by points 0, 1, and 6, and a shaft,
bounded by points 2, 3, 4, and 5. The large outer arrow and the
smaller inner arrows differ in their shafts. Each inner arrow has
two yet smaller arrows beneath it. The inferior arrows overlap the
shafts of the superior arrows and tum each shaft into a series of
descending triangles.

We have two kinds of arrow, represented by the large outer arrow
and the small inner ones. We can treat these differences in several
ways:

• We can define two structures, make each arrow an instance of one
of the structures, and store information about each arrow in the
structure's slots. See the section "Structure Macros" in Reference
Guide to Symbolics-Lisp.

• We can define two flavors, make each arrow an instance of one of
the flavors, and store information about each arrow in the flavor's
instance variables. See the section "Flavors" in Reference Guide to
Symbolics-Lisp.

• We can simply define global variables to represent the state of the
current arrow.

Whichever method we choose, some operations, such as striping the
arrowheads, will be the same for both kinds of arrows. Other
operations, such as striping the shafts, will depend on the kind of
arrow we are drawing.

For simplicity, we use global variables to hold information about the
arrows, and we use functions to define procedures for calculating
coordinates. Note that we bind the global variables rather than set
them. We do this because we might eventually have two or more
arrow programs running at the same time in separate processes. If
we set global variables, one program might incorrectly use it value
set by another. See the section "The Arrow Window: Interaction,
Processes, and the Mouse", page 129.

Our fIrst task in writing the calculation module is to outline the
arrows. Mter creating a fue for the module, we write the code for
this task in six steps:

February 1985

17

Program Development Tools and Techniques

1. Define variables to hold information about the arrow we are
drawing. For the :show-lines message we need the x- and y­
coordinates of the seven points that define the arrow. We also
need the length of the top edge of the arrow, which we use as a
base length. In calculating coordinates, we also need the values of
one-half and one-fourth the length of the top edge.

We use defvar to declare global variables near the beginning of the
file. This special form declares variables special for the compiler and
lets us supply default initial values and documentation strings. By
convention, we surround the names of global variables with
asterisks to distinguish them from names of local variables.

(defvar *top-edge* nil
"length of the top edge of the arrow")

(defvar *top-edge-2* nil
"Half the length of the top edge")

(defvar *top-edge-4* nil
"One-fourth the length of the top edge")

(defvar *pOx* nil
"X-coordinate of point 0")

(defvar *pOy* nil
"Y-coordinate of point 0")

(defvar *p1x* nil
"X-coordinate of point 1")

(defvar *p1y* nil
flY-coordinate of point 1")

(defvar *p2x* nil
fIX-coordinate of point 2")

(defvar *p2y* nil
flY-coordinate of point 2")

(defvar *p3x* nil
fIX-coordinate of point 3")

(defvar *p3y* nil
"V-coordinate of point 3")

(defvar *p4x* nil
"X-coordinate of point 4")

18

Program Development Utilities February 1985

(defvar *p4y* nil
"V-coordinate of point 4")

(defvar *p5x* nil
"X-coordinate of point 5")

(defvar *p5y* nil
"V-coordinate of point 5")

(defvar *p6x* nil
"X-coordinate of point 6")

(defvar *p6y* nil
"V-coordinate of point 6")

2. Define an initial function, draw-arrow-graphic, for the calculation
module. We will call this function from the one we invoke to start
the program. We pass draw-arrow-graphic the length of the top
edge of the large arrow and the coordinates of its top right point
(point 0). These arguments determine the position and size of the
arrow. The function also calculates the half and quarter lengths of
the top edge.

(defun draw-arrow-graphic (*top-edge* *pox* *pOy*)
(let «*top-edge-2* (II *top-edge* 2»

(*top-edge-4* (II *top-edge* 4»»)

3. Outline the large arrow. We compute the coordinates of the other
six points of the arrow, then send a :show-Iines message to draw
the lines. We can calculate the coordinates of points 1, 2, 5, and 6
the same way for both the large and small arrows. We put these
calculations in a separate function so that we can use the same
code for both kinds of arrow. We need a constant to hold the
destination of the :show-Iines messages. We must add to
draw-arrow-graphic a call to draw-big-arrow.

(defconst *dest* nil
"Destination of :SHOW-LINES messages to output")

(defun draw-arrow-graphic (*top-edge* *pOx* *pOy*)
(let «*top-edge-2* (II *top-edge* 2»

(*top-edge-4* (II *top-edge* 4»)
(draw-big-arrow»)

February 1985

19

Program Development Tools and Techniques

(defun draw-big-arrow ()
(multiple-value-bind

(*plx* *ply* *p2x* *p2y* *p5x* *p5y* *p6x* *p6y*)
(compute-arrowhead-points)

(multiple-value-bind (*p3x* *p3y* *p4x* *p4y*)
(compute-arrow-shaft-points)

(draw-big-outline»»

(defun compute-arrowhead-points ()
(let* «plx (- *pOx* *top-edge*»

(ply *pOy*)
(p2x (+ plx *top-edge-4*»
(p2y (- *pOy* *top-edge-4*»
(p6x *pOx*)
(p6y (- *pOy* *top-edge*»
(p5x (- *pOx* *top-edge-4*»
(p5y (+ p6y *top-edge-4*»)

(values plx ply p2x p2y p5x p5y p6x p6y»)

(defun compute-arrow-shaft-points ()
(values (- *plx* *top-edge-4*)

(- *p2y* *top-edge-2*)
p2x
(- *p2y* *top-edge*»)

(defun draw-big-outline ()
(send *dest* ':show-lines

pOx *pOy* *plx* *ply* *p2x* *p2y* *p3x* *p3y*
p4x *p4y* *p5x* *p5y* *p6x* *p6y* *pOx* *pOy*»

4. Outline the largest of the small arrowheads. We can generate all
the interior outlines in the figure by outlining only the heads of the
small arrows. We first draw the largest of these arrowheads by
analogy with our drawing the large arrow. We can use our
function compute-arrowhead-points to calculate the coordinates
of the vertexes. First we need to halve the value of *top-edge*
and bind new values for the coordinates of the top right point of
the arrow.

(defun draw-arrow-graphic (*top-edge* *pOx* *pOy*)
(let «*top-edge-2* (II *top-edge* 2»

(*top-edge-4* (II *top-edge* 4»)
(draw-big-arrow)
(let «*top-edge* *top-edge-2*)

(*pOx* (- *pOx* *top-edge-2*»
(*pOy* (- *pOy* *top-edge-2*»)

(do-arrows»»

20

Program Development Utilities February 1985

(defun do-arrows ()
(let «*top-edge-2* (II *top-edge* 2»

C*top-edge-4* (II *top-edge* 4»)
(draw-arrow»)

(defun draw-arrow ()
Cmultiple-value-bind

(*plx* *ply* *p2x* *p2y* *p5x* *p5y* *p6x* *p6y*)
(compute-arrowhead-points)

(draw-outline»)

Cdefun draw-outline ()
(send *dest* ':show-lines *p2x* *p2y* *plx* *ply*

pOx *pOy* *p6x* *p6y* *p5x* *p5y*»

5. Outline the rest of the small arrows. Each small arrow has two
inferior arrows beneath it. We modify our function do-arrows by
adding two recursive function calls: one to draw the left-hand
inferior of each superior arrow, and one to draw the right-hand
inferior. We limit the levels of recursion by defining a constant,
max-depth, and incrementing the variable *depth* on each call
to do-arrows until *depth* equals *Jnax-depth*.

(defvar *depth* 0
"Level of recursion for the current arrow")

(defconst *max-depth* 7
"Number of levels of recursion")

(defun draw-arrow-graphic (*top-edge* *pOx* *pOy*)
(let «*top-edge-2* (II *top-edge* 2»

(*top-edge-4* (II *top-edge* 4»)
(draw-big-arrow)
(let «*top-edge* *top-edge-2*)

C*pOx* (- *pOx* *top-edge-2*»
(*pOy* (- *pOy* *top-edge-2*»
(*depth* 0»

(do-arrows»»

February 1985

21

Program Development Tools and Techniques

(defun do-arrows ()
(when « *depth* *max-depth*)
~let «*top-edge-2* (II *top-edge* 2»

(*top-edge-4* (II *top-edge* 4»)
(draw-arrow)
(let «*depth* (1+ *depth*»

(*top-edge* *top-edge-2*)
(*pOx* (+ *top-edge-4* (- *pOx* *top-edge*»)
(*pOy* (- *pOy* *top-edge-4*»)

(do-arrows»
(let «*depth* (1+ *depth*»

(*top-edge* *top-edge-2*)
(*pOx* (- *pOx* *top-edge-4*»
(*pOy* (+ *top-edge-4* (- *pOy* *top-edge*»»

(do-arrows»»)

6. Define a function we can call to produce the graphic. This function
has to make an instance of screen-arrow-output, clear the screen,

. and call draw-arrow-graphic. The arguments to
draw-arrow-graphic determine the size and placement of the
figure. For now, we use estimates based on the dimensions, in
pixels, of an LGP page.

(defun do-arrow ()
(let «*dest* (make-instance 'screen-arrow-output»)

(send terminal-io ':clear-screen)
(draw-arrow-graphic 1280 1800 1800»)

We now have a simple working version of our program. We first
compile our code: See the section "Compiling Lisp Code", page 70.
We then use SELECT L to select a Lisp Listener. There we can
evaluate (graphics:do-arrow) to run the program. We can avoid
typing the package prefix by first using pkg-goto to make the
current package graphics:

(pkg-goto 'graphics)

When we run the program, we generate a screen image of the
arrow outlines. Figure 1 shows the output of the program at this
stage.

These six steps illustrate a pattern of incremental program
development:

22

Program Development Utilities February 1985

NIL

L rep Listener 1

ron : y_

Figure 1. Program output with only the outlines of the arrows in
the figure.

February 1985

23

Program Development Tools and Techniques

• We make each function initially simple. We add new functions and
edit old ones as tasks become more complex or refined. Facilities
for keeping track of Lisp syntax and for editing code encourage this
incremental style. See the section "Keeping Track of Lisp Syntax",
page 23. See the section "Editing Code: Program Development
Tools and Techniques", page 56.

• We compile, test, and debug code in sections as we write it. Many
Symbolics programmers, for example, would test draw-arrow both
before and after adding the recursive function calls.

To support this incremental style, we must be able to check the
syntax of our code, edit it, and compile it in sections. See the
section "Keeping Track of Lisp Syntax", page 23. See the section
"Editing Code: Program Development Tools and Techniques", page
56. See the section "Compiling and Evaluating Lisp", page 69.

2.4 Keeping Track of Lisp Syntax

Zmacs allows you to move easily through Lisp code and format it in a readable style.
Commands for aligning code and features for checking for unbalanced parentheses
can help you detect simple syntax errors before compiling.

Zmacs facilities for moving through Lisp code are typically single-keystroke commands
with C-I"'I- modifiers. For example, Forward Sexp (c-I"'I-F) moves forward to the end
of a Lisp expression; End Of Definition (c-I"'I-E) moves forward to the end of a top­
level definition. Most of these commands take arguments specifying the number of
Lisp expressions to be manipulated. In Atom Word Mode word-manipulating
commands operate on Lisp symbol names; when executed before a name with
hyphens, for example, Forward Word (I"'I-F) places the cursor at the end of the name
rather than before the first hyphen. See the section "Major and Minor Modes:
Program Development Tools and Techniques", page 12.

For a list of common Zmacs commands for operating on Lisp expressions: See the
section "Editing Lisp Programs in Zmacs" in Text Editing and Processing.

2.4.1 Comments
You can document code in two ways. You can supply
documentation strings for functions, variables, and constants: See
the section "Finding Out About Existing Code", page 35. You can
also insert comments in the source code. You can retrieve
documentation strings with Zmacs commands and Lisp functions:
See the section "Finding Out About Existing Code", page 35. The
Lisp reader ignores source-code comments. Although you cannot
retrieve them in the same ways as documentation strings, they are
essential to maintaining programs and useful in testing and
debugging. See the section "Compiling and Evaluating Lisp", page
69. See the section "Debugging Lisp Programs", page 79.

24

Program Development Utifities February 1985

Most source-code comments begin with one or more semicolons.
Symbolics programmers follow conventions for aligning comments
and determining the number of semicolons that begin them:

• Top-level comments, starting at the left margin, begin with three
semicolons.

• Long comments about code within Lisp expressions begin with two
semicolons and have the same indentation as the code to which
they refer.

• Comments at the ends of lines of code start in a preset column and
begin with one semicolon.

#1 begins a comment for the Lisp reader. The reader ignores
everything until the next 1#, which closes the comment. #1 and
I # can be on different lines, and # 1 ..• 1 # pairs can be nested.

Use of # 1 ••• 1 # always works for the Lisp reader. The editor,
however, currently does not understand the reader's interpretation
of # 1 •.. 1 #. Instead, the editor retains its knowledge of Lisp
expressions. Symbols can be named with vertical bars, so the editor
(not the reader) behaves as if # 1 ... 1 # is the name of a symbol
surrounded by pound signs, instead of a comment.

Now consider #11 .•. 11#. The reader views this as a comment: the
comment prologue is # I, the comment body is 1 ••• 1. and the
comment epilogue is 1#. The editor, however, interprets this as a
pound sign (#), a symbol with a zero length print name (II), lisp
code (•..), another symbol with a zero length print name (II), and a
stray pound sign (#). Therefore, inside a #11 ... 11#, the editor
commands which operate on Lisp code, such as balancing
parentheses and indenting code, work correctly.

Example
Let's add some comments to draw-arrow-graphic. We can write
a top-level comment without regard for line breaks and then use
Fill Long Comment (fI'I-x) to fill it. We use c-.; to insert a comment
on the current line. We use fI'I-LINE to continue a long comment on
the next line.

February 1985

25

Program Development Tools and Techniques

;;;, This function controls the calculation of the coordinates of the
", endpoints of the lines that make up the figure. The three arguments
;;; are the length of the top edge and the coordinates of the top right
", point of the large arrow. DRAW-ARROW-GRAPHIC calls DRAW-BIG-ARROW
;;; to draw the large arrow and then calls DO-ARROWS to draw the smaller
;;; ones.
(defun draw-arrow-graphic (*top-edge* *pOx* *pOy*)

(let ((*top-edge-2* (II *top-edge* 2»
(*top-edge-4* (II *top-edge* 4»)

(draw-big-arrow) ;Draw large arrow
;; Length of the top-edge for the first small arrow is half the
;; length for the large arrow. Bind new coordinates for the top
;; right point of the small arrow.
(let ((*top-edge* *top-edge-2*)

(*pOx* (- *pOx* *top-edge-2*»
(*pOy* (- *pOy* *top-edge-2*»
(*depth* 0»

(do-arrows»» ;Draw small arrows

Reference
Indent For Comment (c-; or M-;)Inserts or aligns a comment on

the current line, beginning in the
preset comment column.

Kill Comment (C-M-;)

Down Comment Line (M-N)

Up Comment Line (M-P)

Removes a comment from the
current line.

Moves to the comment column on
the next line. Starts a comment
if none is there.

Moves to the comment column on
the previous line. Starts a
comment if none is there.

Indent New Comment Line (M-LINE)

Fill Long Comment (M-X)

Set Comment Column (c-X .;)

When executed within a
comment, inserts a newline and
starts a comment on the next
line with the same indentation as
the previous line.

When executed within a comment
that begins at the left margin,
fills the comment.

Sets the column in which
comments begin to be the column

26

Program Development Utilities February 1985

2.4.2 Aligning Code

that represents the current
cursor position. With an
argument, sets the comment
column to the position of the
previous comment and then
creates or aligns a comment on
the current line.

Code that you write sequentially will remain properly aligned if you
consistently press LINE (instead of RETURN) to add new lines. When
you edit code, you might need to realign it. C-M-Q and C-M-' are
useful for aligning definitions and other Lisp expressions.

Reference
Indent New Line (L I NE) Adds a newline and indents as

appropriate for the current level
of Lisp structure.

Indent For Lisp (TAB or c-M-TAB) Aligns the current line. If the
line is blank, in den ts as
appropriate for the current level
of Lisp structure.

Indent Sexp (C-M-Q)

2.4.3 Balancing Parentheses

Aligns the Lisp expression
following the cursor.

Aligns the current region.

When the cursor is to the right of a close parenthesis, Zmacs
flashes the corresponding open parenthesis. The flashing open
parentheses, along with proper indentation, can indicate whether or
not parentheses are balanced. Improperly aligned code (after you
use a C-M-Q command, for instance) is often a sign of unbalanced
parentheses.

To check for unbalanced parentheses in an entire buffer, use Find
Unbalanced Parentheses (M-X). Zmacs can check source files for
unbalanced parentheses when you save the files. If a fue contains
unbalanced parentheses, Zmacs can notify you and ask whether or
not to save the file anyway. To put this feature into effect, place
the following code in an init file:

February 1985

27

Program Development Tools and Techniques

(login-forms
(setf zwei:*check-unbalanced-parentheses-when-saving* t»

Reference
Find Unbalanced Parentheses (P'I-x)

Searches the buffer for
unbalanced parentheses. Ignores
parentheses in comments and
strings.

2.5 Program Development: Drawing Stripes

So far the sample program outlines all the arrows in the figure. The next task is to
draw the diagonal stripes. To keep this stage as simple as possible, we ignore the
differences in spacing and thickness of lines in the figure. We draw each stripe from
upper left to lower right. We draw the stripes in five steps:

1. Determine the distance between stripes. We first define a
constant, *do-the-stripes*, that we bind to t when we want to
draw stripes and nil when we want only outlines. We define
another constant, *stripe-distance*, to contain the horizontal
distance between stripes. Let's assume we want 64 stripes in the
large arrowhead. We divide the initial *top-edge* by 64 to obtain
stripe-distance .

(defconst *do-the-stripes* t
HWhen t, permits striping of the figure H)

(defconst *stripe-distance* nil
"Horizontal distance between stripes in the large arrow")

28

Program Development Utilities February 1985

(defun draw-arrow-graphic (*top-edge* *pOx* *pOy*)
(let «*top-edge-2* (II *top-edge* 2»

(*top-edge-4* (II *top-edge* 4»
" Compute horizontal distance between stripes in the
;; large arrow, assuming 64 stripes in the large
;; arrowhead.
(*stripe-distance* (II *top-edge* 64»)

(draw-big-arrow) ;Draw large arrow
" Length of the top-edge for the first small arrow is half the
;; length for the large arrow. Bind new coordinates for the top
;; right point of the small arrow.
(let «*top-edge* *top-edge-2*)

(*pOx* (- *pOx* *top-edge-2*»
(*pOy* (- *pOy* *top-edge-2*»
(*depth* 0»

(do-arrows»» ;Draw small arrows

2. Stripe the head of the large arrow. We define a function,
stripe-arrowhead, and call it from draw-big-arrow. The
function loops to calculate the coordinates of the endpoints of the
stripes, starting in the upper right corner and decrementing x and
y by *stripe-distance*.

(defun draw-big-arrow ()
;; Determine coordinates of arrowhead vertexes
(multiple-value-bind

(*plx* *ply* *p2x* *p2y* *p5x* *p5y* *p6x* *p6y*)
(compute-arrowhead-points)

;; Determine coordinates of shaft vertexes
(multiple-value-bind (*p3x* *p3y* *p4x* *p4y*)

(compute-arrow-shaft-points)
(draw-big-outline) ;Outline arrow
(when *do-the-stripes*

(stripe-arrowhead»») ;Stripe head

February 1985

29

Program Development Tools and Techniques

;;; .Function to control striping the head of each arrow.
;;; Determines coordinates of starting and ending points for each
::; stripe. Calls DRAW-ARROWHEAD-lINES to draw each stripe.
(defun stripe-arrowhead ()

;; Find x-coord of top of last stripe to be drawn
(loop with last-x = (- *pOx* *top-edge*)

;; Find starting x-coord for each stripe, decrementing
;; by distance between stripes. Stop at last x-coord.
for start-x from *pOx* by *stripe-distance* above last-x
;; Find ending y-coord for each stripe, decrementing by
;; distance between stripes.
for end-y downfrom *pOy* by *stripe-distance*
;; Draw a stripe
do (draw-arrowhead-lines start-x end-y»)

;;; Draws a stripe in an arrowhead. Arguments are the x-coord
;;; of the starting point and the y-coord of the ending point
;;; of a stripe.
(defun draw-arrowhead-lines (start-x end-y)

(send *dest* ':show-lines start-x *pOy* *pOx* end-y»

3. Stripe the exposed portions of the shaft of the large arrow. The
shaft consists of a series of descending triangles along the left and
right sides. We define a function, stripe-big-arrow-shaft, to
control the striping. We then define six functions, three to stripe
the left side and three to stripe the right. The first function for
each side iterates through the triangles that make up the shaft.
The second function stripes one triangle. The third function draws
one stripe.

(defun draw-big-arrow ()
;; Determine coordinates of arrowhead vertexes
(multiple-value-bind

(*plx* *ply* *p2x* *p2y* *p5x* *p5y* *p6x* *p6y*)
(compute-arrowhead-points)

;; Determine coordinates of shaft vertexes
(multiple-value-bind (*p3x* *p3y* *p4x* *p4y*)

(compute-arrow-shaft-points)
(draw-big-outline)
(when *do-the-stripes*

(stripe-arrowhead)
(stripe-big-arrow-shaft»»)

;Outline arrow

;Stripe head
;Stripe shaft

30

Program Development Utilities February 1985

;;; Function to control striping the shaft of the large arrow.
'" Just calls STRIPE-BIG-ARROW-SHAFT-LEFT to stripe the left side
;;; and STRIPE-BIG-ARROW-SHAFT-RIGHT to stripe the right side.
(defun stripe-big-arrow-shaft ()

(stripe-big-arrow-shaft-left)
(stripe-big-arrow-shaft-right»

;;; Function to control striping left side of big arrow's shaft.
'" Iterates over the triangles that make up the shaft. Determines
;;; coordinates of the apex and bottom right pOint of each triangle.
;;; Calls DRAW-BIG-A~-SHAFT-STRIPES-LEFT to stripe each triangle.
(defun stripe-big-arrow-shaft-left ()

;; Set up a counter for depth. Don't exceed maximum recursion
;; 1 eve 1.
(loop for shaft-depth from 0 below *max-depth*

;; Find current top edge and its-fractions
for top-edge = *top-edge* then (II top-edge 2)
for top-edge-2 = (II top-edge 2)
for top-edge-4 = (II top-edge 4)
;; Find coordinates of apex of triangle
for apex-x = *p2x* then (- apex-x top-edge-2)
for apex-y = *p2y* then (- apex-y top-edge-2)
;; Find x-coord of bottom right vertex
for right-x = (+ apex-x top-edge-4)
;; Find y-coord of bottom edge of triangle
for bottom-y = (- apex-y top-edge-4)
;; Stripe each triangle
do (draw-big-arrow-shaft-stripes-left

top-edge-4 apex-x apex-y right-x bottom-y»)

February 1985

31

Program Development Tools and Techniques

;;; Stripes each triangle in left side of big arrow's shaft.
;;; Arguments are one-fourth current top edge, x- and y-coords
;;; of apex of triangle, x- and y-coords of bottom right vertex.
;;; Determines coordinates of starting and ending points for '
;;; each stripe. Calls DRAW-BIG-ARROW-SHAFT-LINES-LEFT to
;;; draw the lines that make up each stripe.
(defun draw-big-arrow-shaft-stripes-left

(top-edge-4 apex-x apex-y right-x bottom-y)
(loop with half-distance = (II *stripe-distance* 2)

;; Find x-coord of last stripe in triangle
with last-x = (- apex-x top-edge-4)
;; Find x-coord of top of each stripe, decrementing
;; from the apex by HALF the horizontal distance
;; between stripes. Stop at last stripe.
for start-x from apex-x by half-distance above last-x
;; Find y-coord of top of stripe
for start-y downfrom apex-y by half-distance
;; Find x-coord of endpoint of stripe
for end-x downfrom right-x by *stripe-distance*
;; Draw a stripe
do (draw-big-arrow-shaft-lines-left

start-x start-y end-x bottom-y»)

;;; Draws a stripe on the left side of the big arrow's shaft.
;;; Arguments are the coordinates of the starting and ending
;;; points of each stripe.
(defun draw-big-arrow-shaft-lines-left

(start-x start-y end-x end-y)
(send *dest* ':show-lines

start-x start-y end-x end-y»

32

Program Development Utilities February 1985

;;; Function to control striping right side of big arrow's shaft.
;;; Iterates over the triangles that make up the shaft. Determines
'" coordinates of the top point of each triangle. Calls
;;; DRAW-BIG-ARROW-SHAFT-STRIPES-RIGHT to stripe each triangle.
(defun stripe-big-arrow-shaft-right ()

;; Set up a counter for depth. Don't exceed maximum recursion
;; level.
(loop for shaft-depth from 0 below *max-depth*

;; Find new top edge and its fractions
for top-edge = *top-edge* then (II top-edge 2)
for top-edge-2 = (II top-edge 2)
for top-edge-4 = (II top-edge 4)
;; Find coords of top point of triangle
for start-x = (+ *p2x* top-edge-4)
for top-y = (- *p2y* *top-edge-4*)
then (- top-y top-edge-2 top-edge-4)
;; Stripe the triangle
do (draw-big-arrow-shaft-stripes-right

top-edge-2 top-edge-4 start-x top-y»)

;;; Stripes each triangle in right side of big arrow's shaft.
;;; Arguments are one-half and one-fourth of current top edge, and
'" coords of top point of the triangle. Determines coordinates of
;;; starting and ending points for each stripe. Calls
;;; DRAW-BIG-ARROW-SHAFT-LINES-RIGHT to draw a stripe.
(defun draw-big-arrow-shaft-stripes-right

(top-edge-2 top-edge-4 start-x top-y)
(loop with half-distance = (II *stripe-distance* 2)

;; Find y-coord of last stripe in triangle
with last-y = (- top-y top-edge-2)
;; Find y-coord of starting point of stripe. Don't go
;; past the end of the triangle.
for start-y from top-y by *stripe-distance* above last-y
;; Find coords of ending point of the stripe, decrementing
;; by HALF the horizontal distance between stripes
for end-x downfrom (+ start-x top-edge-4) by half-distance
for end-y downfrom (- top-y top-edge-4) by half-distance
;; Draw a stripe
do (draw-big-arrow-shaft-lines-right

start-x start-y end-x end-y»)

;;; Draws a stripe on the right side of the big arrow's shaft.
'" Arguments are the coordinates of the starting and ending points
;;; of the stripe.
(defun draw-big-arrow-shaft-lines-right

(start-x start-y end-x end-y)
(send *dest* ':show-lines

start-x start-y end-x end-y»

February 1985

33

Program Development Tools and Techniques

4. Stripe the heads of the small arrows. We call stripe-arrowhead
from draw-arrow.

(defun draw-arrow ()
;; Calculate coordinates of arrowhead vertexes
(multiple-value-bind

(*plx* *ply* *p2x* *p2y* *p5x* *p5y* *p6x* *p6y*)
(compute-arrowhead-points)

(draw-outline) ;Outline arrowhead
(when *do-the-stripes*

(stripe-arrowhead»» ;Stripe head

5. Stripe the exposed shafts of the small arrows. Like the shaft of
the large arrow, these shafts are composed of a series of descending
triangles. We define three functions: stripe-arrow-shaft iterates
through the triangles that make up a shaft;
draw-arrow-shaft-stripes stripes one triangle; and
draw-arrow-shaft-lines draws one stripe. We call
stripe-arrow-shaft from draw-arrow.

(defun draw-arrow ()
;; Calculate coordinates of arrowhead vertexes
(multiple-value-bind

(*plx* *ply* *p2x* *p2y* *p5x* *p5y* *p6x* *p6y*)
(compute-arrowhead-points)

(draw-outline)
(when *do-the-stripes*

(stripe-arrowhead)
(stripe-arrow-shaft»»

;Outline arrowhead

;Stripe head
;Stripe shaft

34

Program Development Utilities February 1985

;;; Function to control striping the shaft of a small arrow.
;;; Iterates over the descending triangles that make up the shaft.
;;; Calculates the coordinates of the top left and bottom right
;;; vertexes of each triangle. Calls DRAW-ARROW-SHAFT-STRIPES to
'" stripe each triangle.
(defun stripe-arrow-shaft ()

;; Set up a counter for depth. Don't exceed maximum
;; recursion level.
(loop for shaft-depth from *depth* below *max-depth*

;; Calculate fractions of new top edge
for top-edge-2 = *top-edge-2* then (II top-edge-2 2)
for top-edge-4 = (II top-edge-2 2)
;; Find coords of top left point of triangle
for left-x = *p2x* then (- left-x top-edge-4)
for top-y = *p2y* then (- top-y top-edge-2 top-edge-4)
;; Find coords of bottom right point of triangle
for right-x = (+ left-x top-edge-2)
for bottom-y = (- top-y top-edge-2)
;; Stripe the triangle
do (draw-arrow-shaft-stripes

left-x top-y right-x bottom-y»)

'" Stripes each triangle in the shaft of a small arrow.
'" Arguments are coordinates of the top left and bottom
'" right points of the triangle. Calculates the y-coord
;;; of the starting point and the x-coord of the ending point
'" of each stripe. Calls DRAW-ARROW-SHAFT-LINES to draw the
;;; stripe.
(defun draw-arrow-shaft-stripes

(left-x top-y right-x bottom-y)
;; Find y-coord of starting point of stripe. Don't go
;; below the bottom of the triangle.
(loop for start-y from top-y by *stripe-distance* above bottom-y

;; Find x-coord of ending point of the stripe
for end-x down from right-x by *stripe-distance*
;; Draw a stripe
do (draw-arrow-shaft-lines

left-x start-y end-x bottom-y»)

'" Draws a stripe in the shaft of a small arrow. Arguments are
'" the coordinates of the starting and ending points of the
;;; stripe.
(defun draw-arrow-shaft-lines

(left-x start-y end-x bottom-y)
(send *dest* ':show-lines

left-x start-y end-x bottom-y»

35

February 1985 Program Development Tools and Techniques

Figure 2 shows the output of the program, with stripes of even spacing and
thickness.

This stage in program development differs from the beginning of the program in two
ways:

• As we add new functions, we need to refer to existing code for such
information as the order of arguments in argument lists and the
values of variables and constants. See the section "Finding Out
About Existing Code", page 35.

• We must start to change existing code, adding function calls and
new arguments. These changes require increasing use of facilities
for editing code. See the section "Editing Code: Program
Development Tools and Techniques", page 56.

2.6 Finding Out About Existing Code

When you write or edit programs, you often need to fmd characteristics of existing
code. If you write programs incrementally, you need to find existing definitions,
argument lists, and values. To maintain modularity, you must know how new code
should interact with previously written modules. If you want to incorporate parts of
the Lisp Machine system in your programs, you often have to refer to system source
code.

Zmacs and Zetalisp have many facilities for retrieving information about Lisp objects
and for displaying and editing source code. This section describes features especially
useful for writing and editing code. We discuss facilities for learning about Lisp
objects, symbols, variables, functions, and pathnames.

2.6.1 Objects
describe displays information about a Lisp object in a form that
depends on the object's type. For example, for a special variable,
describe displays the value, package, and properties, including
documentation, pathname of the source file, and Zmacs buffer
sectioning node.

An interactive, window-oriented version of describe is the
Inspector. See the section "The Inspector: Program Development
Tools and Techniques", page 104.

describe does not display array elements. For that you can use
the Inspector or listarray.

Example

(describe '*top-edge*)

36

Program Development Utilities

NIL •

L1 sp L1 stener 1

" ... "'".- JL~a: y_

Figure 2. Program output with stripes of even spacing and density.

February 1985

February 1985

37

Program Development Tools and Techniques

The value of *TOP-EDGE* is NIL
lOP-EDGE is in the GRAPHICS package.
TOP-EDGE has property DOCUMENTATION:

"length of the top edge of the arrow"
TOP-EDGE has property SPECIAL:

#<UNIX-PATHNAME "VIXEN: Ildesslldocllworkstylesllpcodex.~">

#<UNIX-PATHNAME "VIXEN: Ildesslldocllworkstylesllpcodex.*H>,
an object of flavor FS:UNIX-PATHNAME,
has instance variable values:
FS:HOST: #<UNIX-CHAOS-HOST SCRC-VIXEN>
FS:DEVICE: :UNSPECIFIC
FS:DIRECTORV:
FS:NAME:
FS:TVPE:
FS:VERSION:

(Hdess" "doc" "workstyles")
"pcodex"
NIL
:UNSPECIFIC

SI:PROPERTV-lIST: (BASE 10 :HODE ...)
FS:STRING-FOR-PRINTING: "VIXEN: Ildesslldocllworkstylesllpcodex.~"

FS:STRING-FOR-HOST: "Ildesslldocllworkstylesllpcodex.~"

FS:STRING-FOR-EDITOR: NIL
FS:STRING-FOR-DIRED: NIL
FS:STRING-FOR-DIRECTORV: NIL

TOP-EDGE has property SOURCE-FILE-NAME:
((DEFVAR #<UNIX-PATHNAHE

"VIXEN: Ildesslldocllworkstylesllpcodex.~"»)

«DEFVAR #<UNIX-PATHNAHE
"VIXEN: Ildesslldocllworkstylesllpcodex.~">)) is a list

TOP-EDGE has property ZWEI:ZHACS-BUFFERS:
((DEFVAR #<SECTION-NODE Variable *TOP-EDGE* 27316607»)
((DEFVAR #<SECTION-NODE Variable *TOP-EDGE* 27316607») is a list

TOP-EDGE

Reference
(describe object)

(listarrayarray)

Displays information about object
in a form that depends on the
object's type. For named
structures, displays the symbolic
names and contents of the
entries in the structure.

Returns a list whose elements are
the elements of array.

38

Program Development Utilities February 1985

2.6.2 Symbols
Several Zmacs commands and Lisp functions find the name of a
symbol or retrieve information about it. Unless you specify a
package, most of these commands search the global package. and
its inferiors. It now takes several minutes to search all these
packages; if you don't know which one the symbol is in, you might
want to use functions like apropos and who-calls only as a last
resort. For more on the meanings and default values of arguments
to these functions: See the section "Program Development Help
Facilities" .

Example
In defining the function stripe-big-arrow-shaft-Ieft, we need to
use the constant *max-depth*, but we remember only that its
name contains "depth". We use either M-ESCAPE (to evaluate a
form in the editor minibuffer) or SELECT L (to select a Lisp
Listener) and then evaluate:

(apropos "depth" 'graphics)

GRAPHICS:DEPTH
GRAPHICS:*HAX-DEPTH* - Bound
GRAPHICS:SHAFT-DEPTH
GRAPHICS:*DEPTH* - Bound
(*DEPTH* SHAFT-DEPTH *HAX-DEPTH* DEPTH)

Example
After compiling stripe-arrowhead we want to test the program as
written so far, but we forget which function calls
draw-arrow-graphic:

(who-calls 'draw-arrow-graphic 'graphics)

DO-ARROW calls DRAW-ARROW-GRAPHIC as a function.
(DO-ARROW)

You can also find the callers of a function with List Callers (M-X).

See the section "Functions: Program Development Tools and
Techniques", page 40.

Reference
(apropos string package inferiors superiors)

Displays the names of all symbols

February 1985

2.6.3 Variables

Where Is Symbol (M-X)

39

Program Development Tools and Techniques

whose names contain string.
Indicates whether or not the
symbol is bound. Displays
argument lists of functions.

Displays the names of packages
that contain the specified symbol.

(where-is string package) Displays the names of packages
that contain a symbol whose
print name is string.

(who-calls symbol package inferiors superiors)
Displays information about uses
of symbol as function, variable, or
constant. Returns a list of the
names of callers of symbol.

(what-files-call symbol package) Displays names of files that
contain uses of symbol as
function, variable, or constant.

(plist symbol)

List Matching Symbols (M-X)

Returns the list representing the
property list of symbol.

Displays the names of symbols for
which a predicate lambda­
expression returns something
other than nil. Prompts for a
predicate for the expression
(lambda (symbol) predicate).
By default, searches the current
package; with an argument of
c-u, searches all packages; with
an argument of c-U c-u, prompts
for the name of a package. Press
c-. to edit definitions of symbols
that satisfy the predicate.

Describe Variable At Point (c-sh-V) is a useful command to display
information about a variable. It tells you whether or not the
variable is bound, whether it has been declared special, and the file,
if any, that contains the declaration. You can find the value of a
variable by evaluating it in a Lisp Listener. If you have added a
documentation string to the variable declaration, you can retrieve
the string with c-sh-V or with c-sh-D, M-sh-D, or documentation.
See the section "Functions: Program Development Tools and
Techniques", page 40.

40

Program Development Utilities February 1985

2.6.4 Functions

Example
In writing stripe-arrow-shaft we want to find out whether or not
max-depth is bound. c-sh-V displays the following information:

HAX-DEPTH has a value and is declared special by file
VIXEN: Idess/doc/workstyles/pcodex.l
Number of levels of recursion

Reference
Describe Variable At Point (c-sh-V)

Indicates whether or not the
variable is declared special, is
bound, or is documented by
defvar or defconst.

Many Zmacs and Zetalisp facilities for finding out about functions
apply both to functions defined by defun and to objects defined by
other special forms and macros that begin with "def".

2.6.4.1 Definitions

Edit Definition (~-.) is a powerful command to fmd and edit
definitions of functions and other objects. It is particularly valuable
for finding source code, including system code, that is stored in a
file other than that associated with the current buffer. It finds
multiple definitions when, for example, a symbol is defined as a
function, a variable, and a flavor. It maintains a list of these
definitions in a support buffer, where you can use ~-. to return to
the definitions even when you are fmished editing.

For a description of how to use Edit Definition (~-.) to edit
definitions of flavor methods: See the section "Methods: Program
Development Tools and Techniques", page 142.

Example
We have written stripe-arrowhead and want to call it fro.m
draw-big-arrow. We use M-. to position the cursor at the
definition of draw-big-arrow.

Reference
Edit Definition (~-.) Selects a buffer containing a

function defmition, reading in the

February 1985

2.6.4.2 Names

41

Program Development Tools and Techniques

source fue if necessary. You can
specify a definition by typing the
name into the minibuffer or
clicking on a name already in the
buffer. Offers name completion
for defmitions already in buffers.
With a numeric argument, selects
the next definition satisfying the
most recently specified name.

Often you know only part of a function name and need to find the
complete name. Use Function Apropos (Ill-X).

Example
We want to call stripe-arrowhead from draw-arrow, but we
remember only that draw-arrow contains the string "arrow". We
use Function Apropos (Ill-X) to display the names of functions that
contain "arrow". We click left on the name draw-arrow to edit its
definition.

m-X Function Apropos arrow

Functions matching arrow:
DO-ARROW
DO-ARROWS
DRAW-ARROW
DRAW-ARROW-GRAPHIC
DRAW-ARROWHEAD-lINES
DRAW-BIG-ARROW
DRAW-BIG-ARROW-SHAFT-lINES-lEFT
DRAW-BIG-ARROW-SHAFT-lINES-RIGHT
DRAW-BIG-ARROW-SHAFT-STRIPES-LEFT
DRAW-BIG-ARROW-SHAFT-STRIPES-RIGHT
STRIPE-ARROWHEAD
STRIPE-BIG-ARROW-SHAFT
STRIPE-BIG-ARROW-SHAFT-lEFT
STRIPE-BIG-ARROW-SHAFT-RIGHT

Reference
Function Apropos (Ill-X) Displays the names of functions

that contain a string. Press c-.
or click left on names in the
display to edit the definitions of
the functions listed.

42

Program Development Utifities February 1985

2.6.4.3 Documentation

Function definitions can include documentation strings. When you
need to know the purpose of the function, you can retrieve the
documentation with c-sh-D, M-sh-D, or documentation.

Example
We wrote a long source-code comment at the beginning of the
definition of draw-arrow-graphic. We could have made this
comment a documentation string:

(defun draw-arrow-graphic (*top-edge* *pox* *pOy*)
"Function controlling the calculation module.

Controls calculation of the coordinates of the endpoints of the lines
that make up the figure. The three arguments are the length of the top
edge and the coordinates of the top right point of the large arrow.
DRAW-ARROW-GRAPHIC calls DRAW-BIG-ARROW to draw the large arrow and then
calls DO-ARROWS to draw the smaller ones."

(let «*top-edge-2* (II *top-edge* 2»
(*top-edge-4* (II *top-edge* 4»
;; Compute horizontal distance between stripes in the
;; large arrow, assuming 64 stripes in the large
;; arrowhead.
(*stripe-distance* (II *top-edge* 64»)

(draw-big-arrow) ;Draw large arrow
" Length of the top-edge for the first small arrow is half the
;; length for the large arrow. Bind new coordinates for the top
;; right point of the small arrow.
(let «*top-edge* *top-edge-2*)

(*pOx* (- *pOx* *top-edge-2*»
(*pOy* (- *pOy* *top-edge-2*»
(*depth* 0»

(do-arrows»» ;Draw small arrows

Later, when defining do-arrow, we add a call to
draw-arrow-graphic. We want to be sure that this is the control
function for the calculation module. We position the cursor at the
name draw-arrow-graphic inside the definition of do-arrow and
use M-sh-D to display the documentation for draw-arrow-graphic:

DRAW-ARROW-GRAPHIC: (*TOP-EDGE* *POX* *POY*)
Function controlling the calculation module.
Controls calculation of the coordinates of the endpoints of the lines
that make up the figure. The three arguments are the length of the top
edge and the coordinates of the top right point of the large arrow.
DRAW-ARROW-GRAPHIC calls DRAW-BIG-ARROW to draw the large arrow and then
calls DO-ARROWS to draw the smaller ones.

February 1985

43

Program Development Tools and Techniques

c-sh-D displays the summary documentation:

ORAW-ARROW-GRAPHIC: Function controlling the calculation module.

Reference
Show Documentation (M-sh-D)

Long Documentation (c-sh-D)

(documentation function)

2.6.4.4 Argument Lists

Displays the function's
documentation.

Displays the function's
documentation string.

Displays the function's
documentation string.

Quick Arglist (c-sh-A) and arglist retrieve the argument list for a
function. What these facilities display depends on the nature of the
function, whether or not it has been compiled, and what options
the function includes. For details: See the function arglist in
Reference Guide to Symbolics-Lisp. See the section "Program
Development Help Facilities".

Example
We are editing the definition of do-arrow to add a call to
draw-arrow-graphic. We want to see the argument list for
draw-arrow-graphic. We position the cursor at the name
draw-arrow-graphic in the definition of do-arrow and use
c-sh-A:

ORAW-ARROW-GRAPHIC: (*TOP-EOGE* *POX* *POv*)

Reference
Quick Arglist (c-sh-A)

(arglist function)

Displays a representation of the
argumen t list of the current
function. With a numeric
argument, you can type the name
of the function into the
minibuffer or click on a function
name in the buffer.

Displays a representation of the
function's argument list.

44

Program Development Utilities February 1985

2.6.4.5 Callers

When you change a function definition, you sometimes need to
make complementary changes in the function's callers. Four Zmacs
commands find the callers of a function. These commands, like
who-calls, now take several minutes to search all packages for
callers. (For the example program, we need to search only the
graphics package.) By default, these commands search the
current package. With an argument of c-u, they search all
packages. You can specify the packages to be searched by giving
the commands an argument of c-U c-U.

Example
We decide to change the order of the arguments to
draw-arrow-graphic. We want to be sure to change all the
callers of draw-arrow-graphic to call the function with arguments
in the correct order. We use Edit Callers (M-X).

Reference
List Callers (M-X)

Multiple List Callers (M-X)

Edit Callers (M-X)

Multiple Edit Callers (M-X)

Lists functions that call the
specified function. Press c-. to
edit the definitions of the
functions listed.

Lists functions that call the
specified functions. Continues
prompting for function names
until you press only RETURN.
Press c-. to edit the definitions
of the functions listed.

Prepares for editing the
definitions of functions that call
the specified function. Press c-.
to edit subsequent definitions.

Prepares for editing the
definitions of functions that call
the specified functions.
Continues prompting for function
names until you press only
RETURN. Press c-. to edit
subsequent definitions.

45

February 1985 Program Development Tools and Techniques

2.6.5 Path names
Zmacs provides several ways of finding the name of a file. If you
just need the name of a file and have some idea what directory it is
in, you can use c-X c-D with an argument of c-u or View Directory
(M-X) to display a directory. If you want to operate on files in a
directory, you can use c-X D with an argument of c-u or Dired
(/'fe-X) to edit a directory. If you want to find a source file but don't
know what directory it is in, you might remember the name of a
function defined in the file. In that case, you might be able to use
M- • to find the file.

Example
After editing the definitions in the calculation module, we want to
find the output module to edit the definition of do-arrow. We
forget the name of the file, but we remember the name of the
directory. We can use c-U c-X c-D to display the directory. If we
have interned do-arrow or read its file into a buffer, we can use
M-. to find do-arrow directly.

Reference
Display Directory (c-X c-D)

View Directory (M-X)

fr Dired (c-X D)

Dired (M-X)

Displays the current buffer's file's
directory. With an argument of
c-u, prompts for a directory to
display.

Lists a directory.

Edits the current buffer's file's
directory. With an argument of
c-u, prompts for a directory to
edit. Displays the files in the
directory. You can use single­
character commands to operate
on the files.

Edits a directory. Displays the
files in the directory. You can
use single-character commands to
operate on the files.

2.7 Program Development: Refining Stripe Density and Spacing

At this stage of development, the program outlines the arrows in the figure and fills
them with stripes of uniform thickness and spacing. In the finished figure, stripe
thickness or density increases from upper right to lower left within each arrow, and
stripe spacing varies among the levels of the figure. We adjust the stripe spacing by

46

Program Development Utilities February 1985

replacing the constant distance between stripes by a variable. We correct the stripe
density by drawing multiple adjacent lines for each stripe.

We adjust the stripe spacing in three steps:

1. Define a variable, *stripe-d*, to represent the distance between
stripes for each arrow.

(defvar *stripe-d* nil
"Horizontal distance between stripes for each arrow")

2. Calculate the value of *stripe-d* for each arrow. For the large
arrow, this is just *stripe-distance*. For the small arrows, we
need to call a new function, compute-stripe-d, from draw-arrow.
compute-stripe-d calculates *stripe-d* as a fraction of
stripe-distance that depends on the level of recursion. It
ensures that *stripe-d* divides *top-edge* evenly and that
stripe-d is never less than 3.

(defun draw-big-arrow ()
;; Determine coordinates of arrowhead vertexes
(multiple-value-bind

(*plx* *ply* *p2x* *p2y* *p5x* *p5y* *p6x* *p6y*)
(compute-arrowhead-points)

;; Determine coordinates of shaft vertexes
(multiple-value-bind (*p3x* *p3y* *p4x* *p4y*)

(compute-arrow-shaft-points)
(draw-big-outline)
(when *do-the-stripes*

;; Bind distance between stripes
(let «*stripe-d* *stripe-distance*»

(stripe-arrowhead)
(stripe-big-arrow-shaft»»»

(defun draw-arrow ()
;; Calculate coordinates of arrowhead vertexes
(multiple-value-bind

;Outline arrow

;Stripe head
;Stripe shaft

(*plx* *ply* *p2x* *p2y* *p5x* *p5y* *p6x* *p6y*)
(compute-arrowhead-points)

(draw-outline) ;Outline arrowhead
(when *do-the-stripes*

;; Calculate distance between stripes
(let «*stripe-d* (compute-stripe-d») I

(stripe-arrowhead) ;Stripe head
(stripe-arrow-shaft»») ;Stripe shaft

February 1985

47

Program Development Tools and Techniques

'" Calculates horizontal distance between stripes.
;;; Distance is a fraction of the distance between stripes for the
'" large arrow. The divisor depends on the level of recursion.
;;; Distance divides length of top edge evenly when possible to
, •• maintain continuity between head and shaft of arrow.
(defun compute-stripe-d ()

;; Distance should be at least 3 pixels so that there is some
;; white space between lines.
(if (s *stripe-distance* 3)

3
;; First find a fraction of *STRIPE-DISTANCE* that depends
;; on recursion level
(loop for dist = (fixr (II *stripe-distance*

(selectq *depth*
(0 2)
(1 4)

(2 2)
(3 1.5)
(4 1.5)
(otherwi se 2»»

;; Increment if it doesn't divide *TOP-EDGE* evenly
then (1+ dist)
when (= 0 (\ *top-edge* dist»
;; Stop when no remainder. Don't return a value
,. less than 3.
do (return (if (s dist 3) 3 dist»»)

3. Replace *stripe-distance* with *stripe-d* in the functions
stripe-arrowhead and draw-arrow-shaft-stripes.

(defun stripe-arrowhead ()
;; Find x-coord of top of last stripe to be drawn
(loop with last-x = (- *pOx* *top-edge*)

;; Find starting x-coord for each stripe. decrementing
;; by distance between stripes. Stop at last x-coord.
for start-x from *pOx* by *stripe-d* above last-x
;; Find ending y-coord for each stripe. decrementing by
;; distance between stripes.
for end-y downfrom *pOy* by *stripe-d*
;; Draw a stripe
do (draw-arrowhead-lines start-x end-y»)

48

Program Development Utilities February 1985

(defun draw-arrow-shaft-stripes
(left-x top-y right-x bottom-y)

;; Find y-coord of starting point of stripe. Don't go
;; below the bottom of the triangle.
(loop for start-y from top-y by *stripe-d* above bottom-y

;; Find x-coord of ending point of the stripe
for end-x downfrom right-x by *stripe-d*
;; Draw a stripe
do (draw-arrow-shaft-lines

left-x start-y end-x bottom-y»)

We adjust the stripe density in three steps:

1. Define two new constants for each arrow, *dl* and *d2*. *dl*
represents the stripe density, or the proportion of the distance
between stripes that is black, at the upper right of each arrow.
d2 represents the density at lower left for each arrow. We
estimate *dl* to be 0.15 and *d2* to be 0.75.

(defconst *d1* 0.15
"Proportion of distance between upper right stripes that is black")

(defconst *d2* 0.75
"Proportion of distance between lower left stripes that is black")

2. Define a function, compute-nUnes, that returns the number of
adjacent lines that make up a stripe to be drawn. This function
calls another, compute-dens, to calculate the proportion of the
distance between stripes that is black. This proportion is a
function of the position of the stripe between the upper right and
lower left of the arrow. compute-nUnes multiplies this proportion
by *stripe-d* to determine the number of lines that make up the
stripe. This number must be at least one and less than *stripe-d*
minus one.
The argument to compute-nlines represents the horizontal
position of the stripe to be drawn between the upper right and
lower left of the arrow. Imagine the top edge of each arrow
projected to the left beyond the arrowhead. Imagine each stripe
projected to the upper left until it intersects with the extended top
edge. The argument to compute-nUnes is the x-coordinate of this
intersection. *pOx* is the x-coordinate of this intersection for the
top right corner of each arrow, where the stripe density is *dl*.
x2 is the x-coordinate of this intersection for the lower left stripe
in each arrow, where the density is *d2*. The x-coordinate for
each stripe must be between *pOx* and *x2*, and the density must
be between *dI* and *d2*.

February 1985

49

Program Development Tools and Techniques

(defvar *x2* nil
"X-coordinate of projection of lower left stripe on top edge")

(defun draw-big-arrow ()
;; Determine coordinates of arrowhead vertexes
(multiple-value-bind

(*plx* *ply* *p2x* *p2y* *p5x* *p5y* *p6x* *p6y*)
(compute-arrowhead-points)

;; Determine coordinates of shaft vertexes
(multip1e-value-bind (*p3x* *p3y* *p4x* *p4y*)

(compute-arrow-shaft-points)
(draw-big-out1ine) ;Outline arrow
(when *do-the-stripes*

;; Bind distance between stripes and x-coord of
;; projection of last stripe onto top edge
(let «*stripe-d* *stripe-distance*)

(*x2* (- *pOx* *top-edge* *top-edge*»)
(stripe-arrowhead) ;Stripe head
(stripe-big-arrow-shaft»»» ;Stripe shaft

(defun draw-arrow ()
;; Calculate coordinates of arrowhead vertexes
(multiple-value-bind

(*p1x* *ply* *p2x* *p2y* *p5x* *p5y* *p6x* *p6y*)
(compute-arrowhead-points)

(draw-outline) jOut1ine arrowhead
(when *do-the-stripes*

;; Calculate distance between stripes and x-coord of
;; projection of last stripe onto top edge
(let «*stripe-d* (compute-stripe-d»

(*x2* (- *pOx* *top-edge* *top-edge*»)
(stripe-arrowhead) jStripe head
(stripe-arrow-shaft»») ;Stripe shaft

I j;j Calculates the number of lines that compose each stripe.
I ;;; Calls COMPUTE-DENS to calculate the proportion of distance
I ;;; between stripes to be filled, then multiplies by the actual
I ;;; distance between stripes. Makes sure that there is at least
I ;;; one line and that there aren't too many lines to leave some
I ;;; white space.
I (defun compute-n1ines (x)
J ;; Call COMPUTE-DENS and multiply result by *stripe-d*
I (let «n1 (fix (* *stripe-d* (compute-dens x»»)
I ;; Supply at least one line
I (cond «~ n1 1) 1)

I ;; But 1 eave some \'/h i te space between 1 i nes
I «~ n1 (- *stripe-d* 1» (- *stripe-d* 2»
I (t n1»»

50

Program Development Utilities February 1985

'" Calculates proportion of distance filled in between each stripe.
'" The argument is the x-coordinate of the projection of the current
'" stripe onto the line formed by the top edge. Determines where the
'" projection of the current stripe is on this line in relation to the
;;; distance from first to last stripes in the arrow. Multiplies this
'" fraction by the difference between densities of first and last
'" stripes. Finally, adds the density of the first stripe.
(defun compute-dens (x)

(+ *dl* (* (- *d2* *dl*)
(II (- x *pOx*) (float (- *x2* *pOx*»»»

3. For each function that draws a stripe, replace the sending of one
:show-lincs message by a loop that might send several. Determine
the number of messages each function should send by calling
compute-nlines.

(defun stripe-arrowhead ()
;; Find x-coord of top of last stripe to be drawn
(loop with last-x = (- *pOx* *top-edge*)

;; Find starting x-coord for each stripe, decrementing
;; by distance between stripes. Stop at last x-coord.
for start-x from *pOx* by *stripe-d* above last-x
;; Find ending y-coord for each stripe, decrementing by
;; distance between stripes.
for end-y downfrom *pOy* by *stripe-d*
;; Find number of lines in the stripe
for nlines = (compute-nlines start-x)
;; Draw the lines that make up the stripe
do (draw-arrowhead-lines nlines start-x end-y last-x»)

(defun draw-arrowhead-lines (nlines start-x end-y last-x)
;; Set up a counter
(loop for i from 0 below nlines

;; Find starting x-coord, subtracting counter from first
;; x-coord
for first-x = (- start-x i)
;; Make sure we don't go past the end of the arrowhead
while « last-x first-x)
;; Draw a line
do (send *dest* ':show-lines

first-x *pOy* *pOx* (- end-y i»»

February 1985

51

Program Development Tools and Techniques

(defun stripe-big-arrow-shaft-left ()
;; Set up a counter for depth. Don't exceed maximum recursion
;; level.
(loop for shaft-depth from 0 below *max-depth*

;; Find current top edge and its fractions
for top-edge = *top-edge* then (II top-edge 2)
for top-edge-2 = (II top-edge 2)
for top-edge-4 = (II top-edge 4)
;; Find coordinates of apex of triangle
for apex-x = *p2x* then (- apex-x top-edge-2)
for apex-y = *p2y* then (- apex-y top-edge-2)
;; Find x-coord of bottom right vertex
for right-x = (+ apex-x top-edge-4)
;; Find y-coord of bottom edge of triangle
for bottom-y = (- apex-y top-edge-4)
;; Find the x-coord of the projection of the first
;; stripe onto top edge
for xoff = (- *pOx* *top-edge*) then (- xoff top-edge)
" Stripe each triangle
do (draw-big-arrow-shaft-stripes-left

top-edge-4 apex-x apex-y right-x bottom-y xoff»)

(defun draw-big-arrow-shaft-stripes-left
(top-edge-4 apex-x apex-y right-x bottom-y xoff)

(loop with half-distance = (II *stripe-distance* 2)
;; Find x-coord of last stripe in triangle
with last-x = (- apex-x top-edge-4)
" Find x-coord of top of each stripe, decrementing
;; from the apex by HALF the horizontal distance
;; between stripes. Stop at last stripe.
for start-x from apex-x by half-distance above last-x
;; Find y-coord of top of stripe
for start-y downfrom apex-y by half-distance
;; Find x-coord of endpoint of stripe
for end-x down from right-x by *stripe-distance*
;; Find number of lines in the stripe
for nlines = (compute-nlines (- xoff (- right-x end-x»)
,. Draw a stripe
do (draw-big-arrow-shaft-lines-left

nlines start-x start-y end-x bottom-y last-x»)

52

Program Development Utilities February 1985

(defun draw-big-arrow-shaft-lines-left
(nlines start-x start-y end-x end-y last-x)

;; Set up two counters -- we need to draw two lines at once
(loop for i from 0

for i2 from 0 by 2
;; Find x-coord of top of first line in stripe
for first-x = (- start-x i)
;; Don't exceed number of lines in stripe
while « i2 nlines)
;; Don't go past the end of the triangle
while « last-x first-x)
;; Draw a line
do (send *dest* ':show-lines first-x (- start-y i)

(- end-x i2) end-y)
;; Draw a second line. The two lines are a refinement
•• to stagger the endpoints of the lines so the diagonal
•• edge looks neat.
(send *dest* ':show-1ines first-x (- start-y i 1)

(- end-x i2 1) end-y»)

(defun stripe-big-arrow-shaft-right ()
;; Set up a counter for depth. Don't exceed maximum recursion
;; 1 eve 1.
(loop for shaft-depth from 0 below *max-depth*

;; Find new top edge and its fractions
for top-edge = *top-edge* then (II top-edge 2)
for top-edge-2 = (II top-edge 2)
for top-edge-4 = (II top-edge 4)
;; Find coords of top point of triangle
for start-x = (+ *p2x* top-edge-4)
for top-y = (- *p2y* *top-edge-4*)
then (- top-y top-edge-2 top-edge-4)
;; Find x-coord of projection of first stripe onto
;; top-edge
for xoff = (- *pOx* *top-edge*) then (- xoff top-edge)
;; Stripe the triangle
do (draw-big-arrow-shaft-stripes-right

top-edge-2 top-edge-4 start-x top-yxoff»)

February 1985

53

Program Development Tools and Techniques

(defun draw-big-arrow-shaft-stripes-right
(top-edge-2 top-edge-4 start-x top-y xoff)

(loop with half-distance = (II *stripe-distance* 2)
;; Find y-coord of last stripe in triangle
with last-y = (- top-y top-edge-2)
;; Find y-coord of starting point of stripe. Don't go
;; past the end of the triangle.
for start-y from top-y by *stripe-distance* above last-y
;; Find coords of ending point of the stripe, decrementing
;; by HALF the horizontal distance between stripes
for end-x down from (+ start-x top-edge-4) by half-distance
for end-y downfrom (- top-y top-edge-4) by half-distance
;; Find number of lines that make up the stripe
for nlines = (compute-nlines (- xoff (- top-y start-y»)
;; Draw a stripe
do (draw-big-arrow-shaft-lines-right

nlines start-x start-y end-x end-y last-y»)

(defun draw-big-arrow-shaft-lines-right
(nlines start-x start-y end-x end-y last-y)

;; Set up two counters -- we need to draw two lines at once
(loop for i from 0

for i2 from 0 by 2
;; Find y-coord of ending point of line
for stop-y = (- end-y i)
;; Don't exceed number of lines in the stripe
while « i2 nlines)
;; Don't go past the bottom of the triangle
while « last-y stop-y)
;; Draw a line
do (send *dest* ':show-lines start-x (- start-y i2)

(- end-x i) stop-y)
;; Draw a second line. The two lines are a refinement
;; to stagger the endpoints of the lines so the diagonal
" edge looks neat.
(send *dest* ':show-lines start-x (- start-y i2 1)

(- end-x i 1) stop-y»)

54

Program Development Utilities February 1985

(defun stripe-arrow-shaft ()
;; Set up a counter for depth. Don't exceed maximum
;; recursion level.
(loop for shaft-depth from *depth* below *max-depth*

;; Calculate fractions of new top edge
for top-edge-2 = *top-edge-2* then (II top-edge-2 2)
for top-edge-4 = (II top-edge-2 2)
;; Find coords of top left point of triangle
for left-x = *p2x* then (- left-x top-edge-4)
for top-y = *p2y* then (- top-y top-edge-2 top-edge-4)
;; Find coords of bottom right point of triangle
for right-x = (+ left-x top-edge-2)
for bottom-y = (- top-y top-edge-2)
;; Find x-coord of projection of first stripe onto top edge
for xoff = (- *pOx* *top-edge*)
then (- xoff top-edge-2 top-edge-2)
;; Stripe the triangle
do (draw-arrow-shaft-stripes

left-x top-y right-x bottom-y xoff»)

(defun draw-arrow-shaft-stripes
(left-x top-y right-x bottom-y xoff)

;; Find y-coord of starting point of stripe. Don't go
;; below the bottom of the triangle.
(loop for start-y from top-y by *stripe-distance* above bottom-y

;; Find x-coord of ending point of the stripe
for end-x downfrom right-x by *stripe-d*
;; Find number of lines in the stripe
for nlines = (compute-nlines (- xoff (- right-x end-x»)
;; Draw a stripe
do (draw-arrow-shaft-lines

nlines left-x start-y end-x bottom-y»)

(defun draw-arrow-shaft-lines
(nlines left-x start-y end-x bottom-y)

;; Set up a counter. Don't exceed number of lines in the stripe.
(loop for i from 0 below nlines

;; Find x-coord of ending point of the line
for last-x = (- end-x i)
;; Don't go past the left edge of the triangle
while « left-x last-x)
;; Draw a line
do (send *dest* ':show-lines left-x (- start-y i)

last-x bottom-y»)

Figure 3 shows the output of the program with stripes of varying spacing and
thiekness.

55

February 1985 Program Development Tools and Techniques

NIL

Li~p Li~tener 1

Y'-

Figure 3. Program output with stripes of varying spacing and density.

56

Program Development Utilities February 1985

At this stage in developing the program we define new functions, constants, and
variables. But most of the work consists of changing existing code. Often you need
to make similar changes to several functions: you add an argument or replace
sending one message by a loop that sends several. In this case we are refining a
new program, but when maintaining existing code you must also make selective or
global changes. The most helpful facilities are those for finding out about existing
code and for editing code. See the section "Finding Out About Existing Code", page
35. See the section "Editing Code: Program Development Tools and Techniques",
page 56.

2.8 Editing Code

Some features are useful mainly in composing new code. See the section "Getting
Started: Program Development Tools and Techniques", page 9. See the section
"Keeping Track of Lisp Syntax", page 23. Other features are helpful in both writing
and editing code. See the section "Finding Out About Existing Code", page 35. In
this section we discuss features that are likely to be most useful in editing existing
code.

2.8.1 Identifying Changed Code
Two pairs of List and Edit commands find or edit changed
definitions in buffers or files. By default, the commands find
changes made since the file was read; use numeric arguments to
find definitions that have changed since they were last compiled or
saved.

Example
After defining the routine that calculates the number of lines that
compose each stripe, we changed many functions to call that
routine and draw the appropriate number of lines. We want to
look over the changes before recompiling the edited definitions. We
use Edit Changed Definitions Of Buffer (M-X).

Reference
List Changed Definitions Of Buffer (M-X)

Lists definitions in the buffer
that have changed since the file
was read. Press c-. to edit the
definitions listed.

Edit Changed Definitions Of Buffer (M-X)
Prepares for editing definitions in
the buffer that have changed.
Press c-. to edit subsequerit
definitions.

57

February 1985 Program Development Tools and Techniques

List Changed Definitions (M-X) Lists definitions in any buffer
that have changed since the files
were read. Press c-. to edit the
definitions listed.

Edit Changed Definitions (M-X) Prepares for editing definitions in
any buffer that have changed.
Press c-. to edit subsequent
definitions.

Print Modifications (M-X) Displays lines in the current
buffer that have changed since
the file was read.

Source Compare (M-X) Compares two buffers or files,
listing differences.

Source Compare Merge (M-X) Compares two buffers or files and
merges differences into a buffer.

2.8.2 Searching and Replacing
Some facilities discussed elsewhere, particularly the series of List
and Edit commands, are useful for displaying and moving to code
you wish to edit. See the section "Finding Out About Existing
Code", page 35. The commands we discuss here find and replace
strings. Tag tables offer a convenient means of making global
changes to programs stored in more than one file. Use Select All
Buffers As Tag Table (M-X) to create a tag table for all buffers read
in. Use Select System As Tag Table (M-X) to create a tag table for
all files in a system. For information on systems: See the section
"Maintaining Large Programs", page 187.

Example
We have defined *stripe-d*, and we want to replace some
occurrences of the constant *stripe-distance* by the variable
stripe-d. We use Query Replace (M-?) to find each occurrence of
stripe-distance. By pressing SPACE, we replace
stripe-distance by *stripe-d* in functions like
stripe-arrowhead. By pressing RUB OUT , we leave
stripe-distance in place in functions like
draw-big-arrow-shaft-stripes-Ieft.

Reference
List Matching Lines (M-X) Displays the lines (following point)

in the current buffer that contain
a string.

58

Program Development Utilities February 1985

Incremental Search (c-s)

Reverse Search (c-R)

Tags Search (M-X)

Replace String (c-7.)

Query Replace (M-7.)

Tags Query Replace (M-X)

Prompts for a string and moves
forward to its first occurrence in
the buffer. Press c-s to repeat
the search with the same string.
Press c-R to search backward
with the same string. After you
invoke the command, if c-S is the
first character you type (instead
of a string), uses the string
specified in the previous search.

Prompts for a string and moves
backward to its last occurrence in
the buffer. Press c-R to repeat
the search with the same string.
Press c-S to search forward with
the same string. After you
invoke the command, if c-R is the
first character you type (instead
of a string), uses the string
specified in the previous search.

Searches for a string in all files
listed in a tag table.

In the buffer, replaces all
occurrences (following point) of
one string by another.

In the buffer, replaces
occurrences (following point) of
one string by another, querying
before each replacement. Press
HELP for possible responses.

In files listed in a tag table,
replaces occurrences of one string
by another, querying before each
replacement.

Select All Buffers As Tag Table (M-X)
Creates a tag table for all buffers
in Zmacs.

Select System As Tag Table (M-X) Creates a tag table for files in a
system defined by defsystem.

59

February 1985 Program Development Tools and Techniques

2.8.3 Moving Text

2.8.3.1 . Moving Through Text

To move short distances through text, you can use the Zmacs
commands for moving by lines, sentences, paragraphs, Lisp forms,
and screens, or you can click left to move point to the mouse
cursor. To move longer distances, you can move to the beginning
or end of the buffer or use the scroll bar. To go to another buffer,
use Select Buffer (c-X B). To switch back and forth between two
buffers, use Select Previous Buffer (c-M-L).

Suppose you want to record a location of point so that you can
return to that location later. Two techniques are particularly
useful:

• Store the location of point in a register. Use Save Position (c-X s)

to store point in a register. Use Jump to Saved Position (c-X J) to
return to that location.

• Use M-SPACE to push the location of point onto the mark stack.
Later, you can use c-M-SPACE to exchange point and the top of the
mark stack. c-U c-SPACE pops the mark stack; repeated execution
moves to previous marks. Note: Some Zmacs commands other
than c-SPACE push point onto the mark stack. When point is
pushed onto the mark stack, the notification "Point pushed"
appears below the mode line.

Reference
Select Buffer (c-X B)

Select Previous Buffer (c-M-L)

Save Position (c-x s)

Moves to another buffer, reading
the buffer name from the
minibuffer. With a numeric
argument, creates a new buffer.

Moves to the previously selected
buffer.

Stores the position of point in a
register. Prompts for a register
name.

Jump To Saved Position (c-X J) Moves point to a position stored
in a register. Prompts for a
register name.

Set Pop Mark (c-SPACE) With no argument, sets the mark
at point and pushes point onto
the mark stack. With an
argument of c-U, pops the mark
stack.

60

Program Development Utilities February 1985

Push Pop Point Explicit (M-SPACE) With no argument, pushes point
onto the mark stack without
setting the mark. With an
argument n, exchanges point
with the nth position on the
mark stack.

Move To Previous Point (c-r.-.-SPACE)

Exchanges point and the top of
the mark stack.

Swap Point And Mark (c-X c-x) Exchanges point and mark.

2.8.3.2 Killing and Yanking

Activates the region between
point and mark. Use Beep (c'-G)
to turn off the region.

When you need to repeat text, you usually want to copy it rather
than type it again. The most common facilities for copying text are
the commands for killing and yanking. Commands that kill more
than one character of text push the text onto the kill ring. c-Y

yanks the last kill into the buffer. After a c-Y command, M-Y

deletes the text just inserted, yanks the previous kill, and rotates
the kill ring.

Example
In the function draw-big-arrow-shaft-lines-Ieft, we send two
:show-lines messages on each iteration. The purpose is to arrange
the starting points of the lines along the diagonal edge so that they
lie as closely as possible on a 45-degree line. The second send
expression is nearly identical to the first. Instead of typing a new
expression, we copy and edit the first one. We follow these steps:

1. Position the cursor after the close parenthesis that ends the first
send expression.

(defun draw-big-arrow-shaft-lines-left
(nlines start-x start-y end-x end-y last-x)

do (send *dest* ':show-lines first-x (- start-y i)
(- end-x i2) end-y)

2. Use c-M-RUBOUT to kill the send expression and push it onto the
kill ring.

February 1985

61

Program Development Tools and Techniques

(defun draw-big-arrow-shaft-lines-left
(nlines start-x start-y end-x end-y last-x)

do

3. Use c-y to restore the expression.

(defun draw-big-arrow-shaft-lines-left
(nlines start-x start-y end-x end-y last-x)

do (send *dest* ':show-lines first-x (- start-y i)
(- end-x i2) end-y)

4. Use LINE to move to the next line and indent.

5. Use c-y to insert a copy of the send expression.

(defun draw-big-arrow-shaft-lines-left
(nlines start-x start-y end-x end-y last-x)

do (send *dest* ':show-lines first-x (- start-y i)
(- end-x i2) end-y)

(send *dest* ':show-lines first-x (- start-y i)
(- end-x i2) end-y)

6. Edit the second send expression.

(defun draw-big-arrow-shaft-lines-left
(nlines start-x start-y end-x end-y last-x)

do (send *dest* ':show-lines first-x (- start-y i)
(- end-x i2) end-y)

Example

(send *dest* ':show-lines first-x (- start-y i 1)
(- end-x i2 1) end-y»)

Suppose we have an existing program in which we have already
defined the function compute-nlines. We can copy the function in
three ways:

62

Program Development Utilities February 1985

• Use c-M-K or c-M-RUBOUT to kill the definition. Use c-y to restore
it. Go to the new buffer. Use c-y to insert a copy of the
definition.

• Use c-M-H to mark the definition. Use M-W to push it onto the kill
ring. Go to the new buffer. Use c-y to insert a copy of the
definition.

• Click middle on the first or last parenthesis of the definition to
mark the definition. Click sh-middle to push it onto the kill ring.
Move to the new buffer. Click sh-middle to insert a copy of the
definition.

Reference
Kill Sexp (c-M-K) Kills forward one or more Lisp

expressions.

Backward Kill Sexp (c-M-RUBOUT) Kills backward one or more Lisp
expressions.

Mark Definition (c-M-H)

Save Region (M-W)

Yank (c-Y)

Yank Pop (M-Y)

[Region (M2)]

Puts point and mark around the
current definition.

Pushes the text of the region
onto the kill ring without killing
the text.

Pops the last killed text from the
kill ring, inserting the text into
the buffer at point. With an
argument n, yanks the nth entry
in the kill ring. Does not rotate
the kill ring.

After a c-Y command, deletes the
text just inserted, yanks
previously killed text from the kill
ring, and rotates the kill ring.
Repeated execution yanks
previous kills and rotates the kill
ring.

When region is defined, pushes
the text of region onto the kill
ring without killing the text (like
M-W). Repeated execution has the
following effects:

• First repetition: kills the text of
region, pushing the text onto the
kill ring (like c-w)

February 1985

2.8.3.3 Using Registers

63

Program Development Tools and Techniques

• Second repetition: pops the text
of region from the kill ring,
inserting the text into the buffer
at point (like c-Y)

• Third and subsequent repetitions:
delete the text just inserted, yank
previously killed text from the kill
ring, and rotate the kill ring (like
M-Y)

If no region is defined, pops the
last killed text from the kill ring,
inserting the text into the buffer
at point (like c-Y). Repeated
execution deletes the text just
inserted, yanks previously killed
text from the kill ring, and
rotates the kill ring (like M-Y).

Using c-y and M-Y to copy text can become tedious when you have
to rotate through a long kill ring to find the text you need.
Another method, especially useful when you want to copy a piece of
text more than once, is to save and restore the text using registers.

Reference
Put Register (c-X x)

Open Get Register (c-X G)

Copies contents of the region to a
register. Prompts for a register
name.

Inserts contents of a register into
the current buffer at point.
Prompts for a register name.

2.8.3.4 Copying Buffers and Files

Use Insert File (M-X) to place the contents of an entire file in your
buffer.

You can copy the contents of a buffer in two ways:

• Use Insert Buffer (M-X), naming the buffer you want to copy.

• Use c-X H to mark the buffer you want to copy. Use M-W to push
its text onto the kill ring. Move to the new buffer. Use c-y to
insert a copy of the text.

64

Program Development Utilities February 1985

Reference
Mark Whole (c-X H)

Insert Buffer (M-X)

Insert File (M-X)

2.8.4 Keyboard Macros

Marks an entire buffer.

Inserts contents of the specified
buffer into the current buffer at
point.

Inserts contents of the specified
file into the current buffer at
point.

Sometimes you need to perform a uniform sequence of commands
on several pieces of text. You can save keystrokes by converting
the sequence to a keyboard macro and installing it on a single key.
If you anticipate using a macro often, you can write Lisp code to
define it in an init file. If you frequently use particular extended
commands, install them on single keys with Set Key (M-X).

Reference
Start Kbd Macro (c-X ()

End Kbd Macro (c-X)

Call Last Kbd Macro (c-X E)

Name Last Kbd Macro (M-X)

Install Macro (M-X)

Install Mouse Macro (M-X)

Deinstall Macro (M-X)

Set Key (M-X)

Begins recording keystrokes as a
keyboard macro.

Stops recording keystrokes as a
keyboard macro.

Executes the last keyboard macro.

Gives the last keyboard macro a
name.

Installs on a key the last
keyboard macro or a named
macro.

Installs a keyboard macro on a
mouse click (such as L2). When
you click to call the macro, point
moves to the position of the
mouse cursor before the ,macro is
executed.

Deinstalls a keyboard macro from
a key or a mouse click.

Installs an extended command on
a single key. Use HELP C to look
for unassigned keys.

65

February 1985 Program Development Tools and Techniques

2.8.5 Using Multiple Windows

2.8.5.1 Multiple Buffers

Sometimes when editing you move often between two buffers. You
might want to see the two buffers at the same time rather than
switch between them. A common use of multiple-window display is
to edit source code while viewing compiler warnings. See the
section "The Compiler Warnings Database: Program Development
Tools and Techniques", page 79.

Example
We add a new :show-lines message to the program but forget
what arguments the message takes. We want to display the source
code for the message handler on the same screen as our program
code. We use c-X 2 to create another window and move to it. We
use Edit Methods (M-X) to find the source code for the method that
handles : show-lines. See the section "Methods: Program
Development Tools and Techniques", page 142.

Example
After finishing the program, we collect a file of bug reports from
users. We want to use these reports in correcting our program
code. We create two windows, one displaying the program code and
the other the bug-report file. We edit the program code, using
C-M-V to scroll the bug-report window as we correct each bug.

Reference
Split Screen (M-X)

Two Windows (c-X 2)

View Two Windows (c-X 3)

Modified Two Windows (c-X 4)

Pops up a menu of buffers and
splits the screen to display the
buffers you select.

Creates a second window, with
the current buffer on top and the
previous buffer on the bottom.
Puts the cursor in the bottom
window.

Creates a second window, with
the current buffer on top and the
previous buffer on the bottom.
Puts the cursor in the top
window.

Creates a second window and
visits a buffer, file, or tag there.
Displays the current buffer in the
top window.

66

Program Development Utilities February 1985

Other Window (c-X 0)

Scroll Other Window (C-M-V)

One Window (c-X 1)

Moves to the other of two
windows.

Scrolls the other of two windows.

Returns to one-window display,
selecting the buffer the cursor is
in.

2.8.5.2 Zmacs and Other Windows

Use [Split Screen] or [Edit Screen] from the System menu to
display an editor window on the screen with other kinds of
windows.

Example
In testing new program functions, we want to have the current
version of the figure on the same screen as the program code. We
use [Split Screen] from the System menu to add a Lisp Listener to
the screen. We move between windows by clicking left on the
window to which we want to move.

We evaluate (pkg-goto 'graphics) and then (do-arrow) in the Lisp
Listener. We adjust the arguments to draw-arrow-graphic so
that the arrow fits neatly into the Lisp Listener window.

(defun do-arrow ()
(let «*dest* (make-instance 'screen-arrow-output»)

(send terminal-io ':clear-screen)
(draw-arrow-graphic 640 1300 1850»)

Figure 4 shows the appearance of the screen with graphic output in
a Lisp Listener and source code in a Zmacs buffer.

To return to displaying only the Zmacs window, we use [Split
Screen] with the existing Zmacs buffer as the only element.

Reference
[Split Screen / Lisp / Existing Window / Existing Zmacs Buffer / Do

It] (from the System menu)
Adds a Lisp Listener to a screen
displaying an existing Zmacs
buffer.

[Split Screen / Existing Window / Existing Zmacs Buffer / Do It]
(from the System menu)
Resumes one-window display of
an existing Zmacs buffer.

67

February 1985 Program Development Tools and Techniques

NIL
I

Li ~p Listener 2
ii; Calculate~ the nUMber of line~ that COMpo~e each ~tripe.
'" Call~ COMPUTE-DENS to celculete the proportion of di~tence
'" between stripes to be filled. then Multiplies by the actual
;;; distence between stripe~. Mekes ~ure thet there is at lee~t
;;; one line end that there aren't too "any line~ to leeve ~OMe
'" white space.
(defun cOMpute-nlines (x)

;; Cell COMPUTE-DENS and "ultiply re~ult by *STRIPE-D*
(let «nl (fix (* *stripe-dt (co"pute-dens x»»)

;; Supply at leest one line
(cond «~ nl 1) 1)

;; But leave so"e white spece between lines
«~ nl (- *~tripe-dl 1» (- l~tripe-d' 2»
(t n1)}»

;; Celculetes proportion of di~tence filled in between eech ~tripe.
" The erguMent is the x-coordinete of the projection of the current
;; stripe onto the line for"ed by the top edge. Deter"ines where the
" projection of the current stripe is on this line in relation to the
" distence frOM first to lest stripes in the arrow. Multiplies this
;; frection by the difference between densities of fir~t and lest
"stripes. Finelly. adds the density of the fir~t ~tripe.
defun cOMpute-dens (x)

(+ *d1* (* (- *d2' *d1')
(// (- x 'pBx*) (floet (- Ix2* 'pex*»»»

2MACS pcodex. 1 /de~~/doc/work~tyle~/ VIXEN: l More above and below

L:~: ovepofnt~:-[~:Rove~toDofnt~ H:Herk thing. H2:Seve/Kill/Venk. R:Menu. R2:SysteM "enu.
e8/17/83 18:~6:25 rOM GRAPHICS: Tyi_

Figure 4. Using multiple windows to ,test the program while viewing the source
code.

68

Program Development Utilities February 1985

2.8.5.3 Other Displays

The window system allows you to use menus, choose-variable-values
windows, and other multiple-window displays in executing programs.
For details: See the section "Using the Window System" in
Programming the User Interface. See the section "Window System
Choice Facilities" in Programming the User Interface. For examples
of simple uses of windows, including choose-variable-values windows:
See the section "Using Flavors and Windows", page 111.

69

February 1985 Program Development Tools and Techniques

3. Compiling and Evaluating Lisp

When should you compile code, and when evaluate it?

The main job of the compiler is to convert interpreted functions into compiled
functions. An interpreted function is a list whose first element is lambda,
named-lambda, subst, or named-subst. These functions are executed by the Lisp
evaluator. The most common interpreted functions you define are named-lambdas.
When you load a source file that contains defun forms or when you otherwise
evaluate these forms, you create named-lambda functions and define the function
specs named in the forms to be those functions.

Compiled functions are Lisp objects that contain programs in the Lisp Machine
instruction set (the machine language). They are executed directly by the microcode.
Compiling an interpreted function (by calling the compiler on a function spec)
converts it into a compiled function and changes the definition of the function spec
to be that compiled function.

You seldom compile functions directly. Instead, you compile either regions of Zmacs
buffers or source files.

• Compiling a region of a Zmacs buffer (or the whole buffer) causes
the compiler to process the forms in the region, one by one. This
processing has side effects on the Lisp environment. For a
summary of the compiler's actions: See the section "Compiling
Code in a Zmacs Buffer", page 70.

• Compiling a source file translates it into a binary file. With some
exceptions, this processing does not have side effects on the Lisp
environment at compile time. When you load a compiled file that
defines functions, you create compiled rather than interpreted
functions and define function specs to be those compiled functions.
In other respects, loading a compiled file has essentially the same
effects as loading a source file (evaluating the forms in the file).
For a discussion of compiling files: See the section "Compiling and
Loading a File", page 73.

Most Symbolics programmers compile all their program code. The compiler checks
extensively for errors and issues warnings that help detect bugs like typographical
errors, unbound symbols, and faulty Lisp syntax. Compiled code runs faster and
takes up less storage than interpreted code. You can compile code in portions and
decide at compile time whether or not to save the compiler output in a binary file.

The most common use for interpreted functions is stepping through their execution.
You cannot step through the execution of a compiled function. If a function is
compiled, you can read its definition into a Zmacs buffer, evaluate the definition, and
then step through a function call.

In addition· to evaluating definitions to create interpreted functions, you might need
to evaluate forms to test a program or find information about a Lisp object. (Unless
you are using the Stepper, functions that you call during these evaluations are

70

Program Development Utilities February 1985

usually compiled,) You can evaluate a form in a Lisp Listener, a breakpoint loop, or
the minibuffer.

For more information on functions: See the section "Functions" in Reference Guide
to Symbolics-Lisp.

3.1 Compiling Lisp Code
You can use Zmacs commands to compile code in a file or Zmacs buffer. Most
Symbolics programmers compile code as soon as they have written enough to test.
This practice lets them correct errors quickly and produce simple working versions of
programs before adding more complex operations. A common command for
incremental compiling from a Zmacs buffer is Compile Region (c-sh-C). If no region
is defined, this command compiles the current definition.

In addition to compiling definitions as they write them, Symbolics programmers
consider it good practice to recompile a function soon after effecting a change.
Because recompiling a series of functions or an entire program can be time­
consuming, it is easier and faster to make changes and then use a single command
to recompile only the changed functions. Using Compile Changed Definitions Of
Buffer (M-sh-C) or Compile Changed Definitions (M-X) is easier in this case than
recompiling each function separately or recompiling the entire buffer.

The order in which you compile definitions can be important. For example, suppose
you have a function that binds a variable you want to be treated as special. If you
compile the function definition before compiling the variable declaration, the compiler
treats the variable as local and generates incorrect output. For this reason you
should usually put defvar and defconst forms at the beginning of a fue or into a
separate file to be compiled and loaded before function definitions.

When editing a program, it is a good idea to load the entire program before you
start work on it. When you compile new definitions or recompile edited ones, the
compiler will have access to variable declarations, macros, functions, and other
information. You will also be able to use Zmacs commands and Lisp functions for
finding information about other p~ts of the program. See the section "Finding Out
About Existing Code", page 35.

Sometimes when you compile a file, write large sections of code at once, or make
many changes to a large program, compiling the code produces many warning
messages. For a description of how Edit Compiler Warnings (M-X) lets you use the
compiler warnings as a reference source for debugging: See the section "Debugging
Lisp Programs", page 79.

For more information on the compiler: See the section "The Compiler", page 305.

3.1.1 Compiling Code in a Zmacs Buffer
Compiling a top-level form in a Zmacs buffer - using a command
like Compile Region (c-sh-C) or Compile Buffer (!""I-x) - has side

February 1985

71

Program Development Tools and Techniques

effects on the Lisp environment. Following is a summary of the
compiler's actions:

Form

Macro form

Function definition

Macro definition

Special case

Atom, comment form

Other

Example

Action

If the form is a list whose first
element is a macro, the compiler
expands the form and processes this
expanded form instead of the original.

If the form is a list whose first
element is defun, the compiler
constructs a lambda-expression from
the definition, converts the lambda­
expression into a compiled function,
and defines the function spec named in
the definition to be that compiled
function.

If the form is a list whose first
element is macro, the compiler
constructs a lambda-expression as the
macro's expander function, converts
the lambda-expression into a compiled
function, and defines the function spec
named in the definition to be the
macro. A defmacro form expands
into this kind of form.

Some forms, like eval-when, declare,
and progn 'compile forms, have
special meaning for the compiler. It
handles each of these in a different
way. For details: See the section
"How the Stream Compiler Handles
Top-level Forms".

The forln is ignored.

The form is evaluated.

We have written some initial code for the controlling function of
the calculation module:

(defvar *top-edge* nil
"Length of the top edge of the arrow")

72

Program Development Utilities February 1985

(defvar *pOx* nil
"X-coordinate of point 0")

(defvar *pOy* nil
"V-coordinate of point 0")

(defun draw-arrow-graphic (*top-edge* *pOx *pOy*)
(let «*top-edge-2* (II *top-edge* 2»

(*top-edge-4* (II *top-edge* 4»)
(draw-big-arrow»)

Because we have no other code in the buffer, we can compile these
definitions using Compile Buffer (M-X). If we had more code in the
buffer, we could compile these definitions by setting the mark at
one end and point at the other and using Compile Region (c-sh-C).

The compiler displays the following warnings:

For Function DRAW-ARROW-GRAPHIC
The variable *TOP-EDGE-4* was never used.
The variable *TOP-EDGE-2* was never used.
The variable *POX was never used.

The following functions were referenced but don't seem defined:
DRAW-BIG-ARROW referenced by DRAW-ARROW-GRAPHIC

The first set of warnings indicates that the compiler is treating
top-edge-2, *top-edge-4*, and *pOx as local variables. We
neglected to declare *top-edge-2* and *top-edge-4* special with
defvar; *pOx is of course a misspelling. The lack of a definition
for draw-big-arrow is not surprising; we have yet to write that
definition.

We add the two defvars and correct the spelling of ·pOx*. We
compile the changes using Compile Changed Definitions Of Buffer
(M-sh-C). The compiler now display~ only one warning:

The following functions were referenced but don't seem defined:
DRAW-BIG-ARROW referenced by DRAW-ARROW-GRAPHIC

We continue writing the program by defining draw-big-arrow.

Reference
Compile Region (c-sh-C) Compiles the region. If no region

February 1985

73

Program Development Tools and Techniques

is marked, compiles the current
definition.

[Zmacs Window / Compile Region]Compiles the region. If no region
is marked, compiles the current
definition.

Compile Changed Definitions Of Buffer (M-sh-C)

Compiles all the definitions in the
current Zmacs buffer that have
changed since the definitions
were last compiled.

Compile Changed Definitions (M-X)

Compile Buffer (M-X)

Compiles all the definitions in any
Zmacs buffer that have changed
since the definitions were last
compiled.

Compiles the current Zmacs
buffer.

Compile (M-X) [Zmacs Window (R)]
Pops up a menu of options for
compiling code in the current
context.

3.1.2 Compiling and Loading a File
Compiling a file, using Compile File (M-X) or compiler:compile-file,
saves the compiler output in a binary file of canonical type :bin.
For the most part, compiling a file does not have side effects on the
Lisp environment. The basic difference between compiling a source
file and compiling the same forms in a buffer is this: When you
compile a file, most function specs are not defined and most forms
(except those within eval-when (compile) forms) are not evaluated
at compile time. Instead, the compiler puts instructions into the
binary file that cause these things to happen at load time. You can
load a source or binary file into the Lisp environment by using
Load File (M-X) or load. You can compile a file and then load the
reSUlting binary file by using compiler:compile-file-Ioad.

Example
In a previous session, we wrote the output routines for the
program, saved them in a file, and compiled that file. Now we are
writing the first calculation routines, and we want to test them.
We need to load the file that contains the compiled code for the
output routines. We use Load File (M-X).

74

Program Development Utilities February 1985

Suppose our two files are in the directory >Symbol ics>examples> on
Lisp Machine acme-blue. The file containing the output routines is
arrow-out. The current Zmacs buffer, and the file containing the
calculation module; is arrow-calc. When we type m-X load file (or
m-X 10 f, using completion), Zmacs prompts for a file name:

Load File: (Default is ACME-BLUE:>Symbolics>examples>arrow-calc)

We type arrow~out, without a file type. The latest version of
arrow-out.hin is loaded. If no compiled version exists or if the
latest cornpiled file is older than the latest source file, Zmacs offers
to compile the source file and then load the compiled version.

Reference
Compile File (M-X) Prompts for the name of a file

and compiles that file, placing the
compiled code in a file of
canonical type :bin.

(compiler:compile-file file-name)

Load File (M-X)

(load file-name)

Compiles a file, placing the
com piled code in a file of
canonical type :bin.

Prompts for a file name, taking
the default from the current
buffer. Offers to save the buffer
if it has changed since the file
was last read or saved. Offers to
compile the source file if no
compiled version exists or if the
source file was created after the
latest compiled version. If you
specify a file type, loads the latest
version of the file of that type. If
you don't specify a file type, loads
the latest version of the binary
file (even if older than the latest
source file); if no binary file
exists, loads the latest source file.

Loads a file in to the Lisp
environment. If you specify a file
type, loads the latest version of
the file of that type. If you don't
specify a file type, loads the latest

February 1985

75

Program Development Tools and Techniques

version of the binary file (even if
older than the latest source file);
if no binary file exists, loads the
latest source file.

(compiler:compile-file-load file-name)
Compiles a file, placing the
compiled code in a file of
canonical type :bin. Loads the
resulting binary file.

3.2 Evaluating Lisp Code

3.2.1 Evaluation and the Editor
The most common reason for evaluating definitions in a Zmacs
buffer is to step through the execution of the functions they define.
Sometimes in debugging you want to proceed step by step through
a function call, using step or the :step option for trace. See the
section "Tracing and Stepping: Program Development Tools and
Techniques", page 92. You can do this only with interpreted
functions. If a function is compiled, you can use Edit Definition
(M-.) to read its definition into a Zmacs buffer. You can then
evaluate the definition using Evaluate Region (c-sh-E). \Vhen you
have finished stepping, you can recompile the definition.

The evaluation of Lisp forms in the editing buffer or the minibuffer
normally displays the returned values in the echo area (beneath the
mode line near the bottom of the screen). Any output to
standard-output during the evaluation appears in the editor
typeout window. Two commands, Evaluate Into Buffer (M-X) and
Evaluate And Replace Into Buffer (M-X), print the returned values
in the Zmacs buffer at point. With a numeric argument, these
commands also insert any typeout from the evaluation into the
Zmacs buffer.

Often while editing you need to evaluate forms other than
. definitions in a buffer. You need to call a function to test your

program, or you need to call a funotion like describe to find
information about a Lisp object. (Of course, these functions need
not be interpreted.) You can type forms to be evaluated in three
ways:

• Use M-ESCAPE to evaluate a form in the minibuffer.

• Use SUSPEND to enter a Lisp breakpoint loop. You type forms that
are read in the buffer's package and evaluated. Use RESUME to
return to the editor.

76

Program Development Utilities February 1985

• Use SELECT L or [Lisp] from the System menu to select a Lisp
Listener and evaluate forms there. Use SELECT E or [Edit] from
the System menu to return to the editor.

Example
We have found a bug in the program and suspect that it lies in the
function do-arrows. We want to step through a call to that
function, but it is compiled. We use Edit Definition (M-.) to find
the definition of do-arrows and Evaluate Region (c-sh-E) to
evaluate the definition. We then step through a function call. See
the section "Stepping: Program Development Tools and
Techniques", page 94.

Example
We have written and compiled the output routines and the initial
code for the calculation module. We want to test the program as
written so far. The top-level function to call is do-arrow. We can
test the program in three ways:

• Press M-ESCAPE and evaluate (do-arrow). The graphic output
appears in a typeout window. We press SPACE to restore the
editing buffer to the screen.

• Press SUSPEND to enter a Lisp breakpoint loop and evaluate
(do-arrow; there. We press RESUME to return to the editor.

• Press SELECT L to select a Lisp Listener. If the current package is
not graphics, we first evaluate (pkg-goto 'graphics) and then
(do-arrow). We press SELECT E to return to the editor.

Example
We want to be sure that new function names do not conflict with
other symbol names in the graphics package. Most of our
function names contain the string "arrow". We want to find the
symbol names that contain that string. We use ",,-ESCAPE, SUSPEND,

or SELECT L and evaluate:

(apropos "arrow" 'graphics)

Reference
Evaluate Region (c-sh-E) Evaluates the region. If no

region is marked, evaluates the
current definition.

February 1985

77

Program Development Tools and Techniques

Evaluate Changed Definitions Of Buffer (M-sh-E)
Evaluates all the definitions in
the current Zmacs buffer that
have changed since the definitions
were last evaluated.

Evaluate Changed Definitions (M-X)

Evaluate Buffer (M-X)

Evaluates all the definitions in
any Zmacs buffer that have
changed since the definitions
were last evaluated.

Evaluates the current Zmacs
buffer.

Evaluate Into Buffer (M-X) Prompts for a Lisp form to
evaluate and prints the returned
values in the Zmacs buffer at
point.

Evaluate And Replace Into Buffer (M-X)
Evaluates the Lisp form following
point and replaces it with the
printed representation of the
values it returns.

Evaluate Minibuffer (M-ESCAPE) Prompts for a Lisp form to
evaluate in the minibuffer and
displays the returned values in
the echo area.

Evaluate (M-X) [Zmacs Window (R)]

SUSPEND

Pops up a menu of options for
evaluating code in the current
context.

Enters a Lisp breakpoint loop,
where you can evaluate forms.
The current package in the
breakpoint loop is the same as in
the previous context. Use RESUME
to return to the previous context.

3.2.2 Lisp Input Editing
When typing to a Lisp Listener you can use many editing
commands to modify a form before you evaluate it. You often
repeat the same function calls or variations of similar function calls
when testing code. Instead of retyping these forms, you can use
the Lisp input editor's ring of input entries to retrieve them within

78

Program Development Utilities February 1985

the same Lisp Listener. When you yank a previous form, the Lisp
input editor places the cursor at the end of the form but omits the
final close parenthesis or carriage return. You can then edit the
form before typing the final delimiter to evaluate it.

Example
We execute our program by calling the function do-arrow. We
evaluate (do-arrow) once and would like to evaluate it again within
the samf:; Lisp Listener. We press C-M-Y to yank the last form we
typed. If that is not (do-arrow), we press M-Yuntil (do-arrow
appears, without the close parenthesis. We type a close parenthesis
to begin the evaluation.

Reference
C-M-Y Yanks the last form typed to the

Lisp Listener. It waits after the
final delimiter for you to press
END, allowing you to edit the form
before evaluating it. With an
argument n, yanks the nth form
in the input ring. In Zmacs, this
command performs a different
action: it repeats the last
minibuffer command typed.

After a C-M-Y command, deletes
the form just inserted, yanks the
previous form from the input
ring, and rotates the input ring.
Repeated execution yanks
previous forms and rotates the
input ring. In Zmacs, this
command rotates either the
minibuffer command history or
the text kill history, (depending
on which yanking command it
follows) and yanks elements from
that history. See the section
"Retrieving History Elements" in
Text Editing and Processing.

79

February 1985 Program Development Tools and Techniques

4. Debugging Lisp Programs

The Symbolics computer offers a variety of tools for debugging Lisp programs. The
kind of debugging aid you use depends on the application of the program. Bugs
might be more obvious in a graphics program than in a minor modification of some
internal system function. Problems with a graphics programs are sometimes evident
from the program's output. On the other hand, programs with a complex window
system application might have bugs that are difficult to identify.

Debugging aids are more appropriate for some kinds of bugs than for others. You
commonly encounter three sorts of problems with a program:

• The program does not compile correctly. You can use the compiler
warnings database to edit code before recompiling.

• The program compiles, but running it signals an error. Usually
errors invoke the Debugger, where you can examine stack frames,
return values, disassemble code, call the editor, and perform other
tasks.

• The program runs but does not behave as it should. You can use
many techniques for finding the problem, including commenting out
sections of code, tracing, stepping, setting breakpoints,
disassembling, and inspecting. Often the most effective method is
simply studying the source code.

4.1 The Compiler Warnings Database

The compiler sometimes produces many warning messages. The compiler maintains
a database of these messages, organized by file. Each time you compile or recompile
code, the compiler adds or removes warnings from the database, so that the database
reflects the state of your program as of the last time you compiled it.

If you want to save warnings in a file, you can use Compiler Warnings (M-X) to put
them in a buffer and then write them to a file. When you make a system using
make-system, you can use the :batch option to save compiler warnings in a file:
See the section "make-system Keywords", page 222. Use Load Compiler Warnings
(M-X) to load compiler warnings into the database from a file.

If compiler warnings exist in the database, Edit Compiler Warnings (M-X) lets you
edit source code while consulting the corresponding warnings. The command splits
the screen, with compiler warnings in one window and the source code to which the
warnings apply in the other. As you finish editing each section of code, you press
C-,. This displays the next warning in one window and the source code to which
the next warning applies in the other window. When you reach the last compiler
warning, pressing C-, returns the screen to its previous configuration.

Example
Elsewhere we discuss compiling the initial code for the calculation
module of the sample program: See the section "Compiling Code in
a Zmacs Buffer", page 70. Figure 5 sbows the result of using Edit

80

Program Development Utifities February 1985

Compiler Warnings (M-X) after compiling the buffer with the initial
code. The compiler warnings are in the upper window and the
source code in the lower window.

Reference
Edit Compiler Warnings (M-X)

Compiler Warnings (M-X)

Load Compiler Warnings (M-X)

4.2 The Debugger

Prepares to edit all source code
that has produced compiler
warnings. Lists each file whose
code produced warnings and asks
whether you want to edit that
file. Splits the screen, with
compiler warnings in the upper
window and source code that
produced those warnings in the
lower window. Use C-. to display
subsequent warnings and edit the
applicable code.

Puts compiler warning messages
into a buffer and selects that
buffer.

Loads a file containing compiler
warning messages into the
compiler warnings database.

Some errors during execution automatically invoke the Lisp Machine's Debugger.
You can enter the Debugger at other times by pressing C-M-SUSPEND. You can also
enter the Debugger from within a program by inserting a call to dbg (with no
arguments) into the code and recompiling. You can force a process into the
Debugger by calling dbg with an argument of process. See the section "Breakpoints:
Program Development Tools and Techniques", page 98.

The Debugger is useful for examining stack frames. With Debugger commands, you
can see the arguments for the current stack frame, disassemble its code, return a
value from it, go up and down the stack, and invoke the editor to edit function
definitions. A common Debugger sequence is to disassemble code for the current
frame, call the editor to edit and recompile the function, and test the changed
function.

A window-oriented version of the Debugger is the Display Debugger. Invoke it from
within the Debugger by pressing C-M-W.

Example
We use the variable *x2* in computing the thickness of each stripe.
x2 is the x-coordinate of the projection of the last stripe in each

81

February 1985 Program Development Tools and Techniques

~arnlng~ for fl Ie VIXEN: ~de~~~doc~work~tyle~~pcodex.:

I For Function DRA~-ARRO~-GRAPHIC
The variable -TOP-EDGE-4- wa~ never u~ed.
The variable -TOP-EDGE-2* wa5 never u~ed.
The variable -PBX wa~ never u~ed.
DRA~-BIG-ARRO~ wa~ referenced but not defined.

Cdefun draw-arrow-graphlc <*top-edgel *pBx IpByl)
(let «.top-edge-2' (~~ 'top-edge' 2»

(.top-edge-4* (~~ .top-edge' 4»)
(draw-blg-arrow»)

pcodex.1 ~de55~doc~work5tyle5~ VIXEN:
2MACS (LISP) pcodex.1 ~de~~~doc~work~tyle5~ VIXEN: a
Contro!-. 15 now Edit warnlng5 for next function.
1 "ore definition a~ well
Point pU5hed

: Move po Int. L2: Move to po Int. M: Mark thGI Rn91..HMllC2S: 5:, ave~K I T' y' ~I·vank. R: Menu. R2: SY5te" "enu.
B8~2B~83 16:49:52 ro" A~

Figure 5. Edit Compiler Warnings (M-X) splits the screen. The upper window
contains compiler warnings. The lower window contains the source code.

82

Program Development Utilities February 1985

arrow onto the top edge. We must bind it for each arrow to the
difference between the value of *pOx* and twice the value of
top-edge .

Suppose that we forget to bind *x2* for the big arrow in the
function draw-big-arrow. The initial value of *x2* is nil. In the
function compute-dens, we subtract *pOx* from *x2*. Because
the value of *x2* is not a number, we generate an error when we
first call the function. The error invokes the Debugger with the
name of the function in which the error occurred, the value of the
function's arguments, and the following error message:

»Trap: The first argument given to SYS:--INTERNAL. NIL, was not a number.

The Debugger also displays a listing of proceed types, special
commands, and restart handlers, along with their key bindings:
See the section "Special Keys" in Reference Guide to Symbolics-Lisp.
We can use one of these options, or we can use other Debugger
commands to examine or manipulate the stack. Let's use C-M-W to
invoke the Display Debugger.

Figure 6 shows the Display Debugger frame as it looks when we
invoke it. The top window, an inspect pane, shows disassembled
code for compute-dens with an arrow at the instruction that
produced the error. The next window is an inspect history pane.
The two windows side by side show the function's arguments and
local variables and their values. The next window is a backtrace of
the stack with an arrow at the frame that produced the error.
The next window is a mouse-sensitive listing of options for
proceeding or restarting. Next is a command menu. The bottom
window is a Lisp Listener with the error message displayed.

The disassembled code for compute-dens shows that the first
argument to the subtraction that caused the error was the value of
x2. We can inspect *x2* simply by clicking on its printed
representation in the disassembled code. Figure 7 shows the
Display Debugger after we inspect *x2*. The value of *x2* is nil.
We could have confirmed this by evaluating *x2* in the Lisp
Listener pane.

Now, if we remember what the value of *x2* is supposed to be, we
can set *x2* to that value by typing to the Lisp Listener pane:

(setq *x2* (- *pox* *top-edge* *top-edge*»

We can then click on [Retry] to reinvoke the stack frame and
continue the program.

February 1985

83

Program Development Tools and Techniques

If we forget the value of *x2*, we might want to look at the source
code. We can invoke the editor by clicking on [Edit] and then on
the name of the function we want to edit. Inside the editor, we
can change and recompile code. We can edit draw-big-arrow to
bind *x2* and then recompile that function. If we entered the
Debugger from the editor, we cannot return to the Debugger, but
we can run the program again. Otherwise, we can return to the
Display Debugger by pressing c-~. We can then set the value of
x2 and reinvoke the frame.

In the Debugger, c-HELP displays information on Debugger commands. Following are
some of the most useful commands:

Reference
c-A

c-E

c-L

c-N

c-P

c-R

M-B

M-L

4.3 Commenting Out Code

Shows arguments for the current stack frame.

Calls the editor to edit the function from the
current frame.

Clears the screen and redisplays the original error
message.

Goes down the stack by one frame.

Goes up the stack by one frame.

Returns a value from the current frame.

Shows a backtrace of function names with
arguments.

Shows local variables and disassembled code for the
current frame.

Reinvokes the current frame.

Invokes the Display Debugger.

Sometimes a program runs but behaves in an unexpected way. In looking for the
source of the problem, you might want to execute some portions of the program and
disable others. An easy way to disable code without destroying it is to make a
comment of it. You can comment out code by preceding it with a semicolon or
surrounding it with # 11 ... 11 #: See the section "Comments: Program Development
Tools and Techniques", page 23.

Example
We have outlined the large arrow and the largest of the small
arrows. We try to outline the rest of the small arrows by adding
two recursive function calls to do-arrows:

84

Program Development Utilities

COMPUTE-DENS
3 PUSH-INDIRECT .Dl'
4 BUILTIN --INTERNAL STACK
5 PUSH-LOCAL FPI9 ;X
6 PUSH-INDIRECT 'P9X'
7 BUILTIN --INTERNAL STACK

19 PUSH-INDIRECT ~~
11 PUSH-INDIRECT 'P9xl

=> 12 BUILTIN --INTERNAL STACK
13 BUILTIN FLOAT STACK
14 BUILTIN ~-INTERNAL STACK

#(Steck-Fre~e COMPUTE-DENS PC=12>

Args:
Arg 9 (X): 1899

(DO-ARRO&J)
(DRA&J-ARRO&J-GRAPHIC 1289 1899 1899)
(DRA&J-BIG-ARRO&J)
(STRIPE-ARRO&JHEAD)
(COMPUTE-NLINES lS99)

.(COMPUTE-DENS 1899)

Mon aboN

Locals:

MOlC above

MOlC below

Return to nor~al debugger, staying In error context.
Supply replace~ent argu~ent
Return e velue fro~ the --INTERNAL Instruction
Retry the --INTERNAL Instruction
Lisp Top Level In Lisp Listener 1

What _Error
Arslist

Inspect
Edit

Return
Throw

Set ars
Search

Retry

»Trep: The first ergu~ent given to SVS:--INTERNAL, NIL, was not e nu~ber.

February 1985

T
NIL

I."hoose a va I ue by po' nt' ng at the va I ue. GRRAi 9Hhrtcge: ts obJeTcyt, 'tlto error hand I er.
98/29/83 17:91:23'ro~ P S

Figure 6. The Display Debugger: inspecting the stack frame containing a call to
compute-dens.

85

February 1985 Program Development Tools and Techniques

Top of obi"'
X2
Volue 15 NIL
Function 15 unbound
Property 115t: (DOCUMENTATION ••••• SPECIAL U<UNIX-PATHNAME ·VIXEN: //de55//~ork5tyle5.
pockoge: U<Pockoge GRAPHICS 36635277>

U<Stock-Frofte COMPUTE-DENS PC=12>
X2

Arg5:
Arg 9 (X): 18B9

(DO-ARRO~)
(DRA~-ARRO~-GRAPHIC 1289 1899 1899)
(DRA~-8IG-ARRO~)
(STRIPE-ARROWHEAD)
(COMPUTE-NlINES 1899)

+(COMPUTE-DENS 1899)

locol5:

MOl. above

MOl. Nlow

Return to norftol debugger, 5toylng In error context.
Supply reploce"ent orgu"ent
Return 0 volue fro" the --INTERNAL In5tructlon
Retry the --INTERNAL In5tructlon
LI5p Top Level in LI5p Li5tener 1

What Error
Arslist

Inspect
Edit

Return
ThroH

Retry

»Trop: The flr5t orgu"ent given to SVS:--INTERNAL, NIL, ~05 not 0 nUftber.

~hoo5e 0 volue b~ pointing ot the value. GRRAI9HhltC9:.t5 ObJTeyct
l

into error handle~.
98~29~83 17:92:95 roft P S

Figure 7. The Display Debugger: inspecting the variable *x2*.

86

Program Development Utilities February 1985

(defun do-arrows ()
;; Don't exceed maximum recursion level
(when « *depth* *max-depth*)

;; Bind values for half and one-fourth of top edge
(let «*top-edge-2* (II *top-edge* 2»

(*top-edge-4* (II *top-edge* 4»)
(draw-arrow) ;Draw a small arrow
;; Increment depth. Divide top edge in half. Bind new
;; coordinates for top right point of next arrow.
(let «*depth* (1+ *depth*»

(*top-edge* *top-edge-2*)
(*pOx* (+ *top-edge-4* (- *pOx* *top-edge*»)
(*pOy* (- *pOy* *top-edge-2*»)

;; Draw a left-hand child arrow
(do-arrows»

;; Increment depth. Divide top edge in half. Bind new
;; coordinates for top right point of next arrow.
(let «*depth* (1+ *depth*»

(*top-edge* *top-edge-2*)
<*pOx* (- *pOx* *top-edge-2*»
(*pOy* (+ *top-edge-4* (- *pOy* *top-edge*»»

;; Draw a right-hand child arrow
(do-arrows»»)

This code produces the result shown in figure 8. Something is
clearly wrong with at least one of the function calls, but the
complexity of the figure makes it difficult to see the source of the
error. We simplify the figure by making a comment of the second
recursive function call:

February 1985

87

Program Development Tools and Techniques

(defun do-arrows ()
;; Don't exceed maximum recursion level
(when « *depth* *max-depth*)

#11

11#
»)

;; Bind values for half and one-fourth of top edge
(let «*top-edge-2* (II *top-edge* 2»

(*top-edge-4* (II *top-edge* 4»)
(draw-arrow) ;Draw a small arrow
;; Increment depth. Divide top edge in half. Bind new
;; coordinates for top right point of next arrow.
(let «*depth* (1+ *depth*»

(*top-edge* *top-edge-2*)
(*pOx* (+ *top-edge-4* (- *pOx* *top-edge*»)
(*pOy* (- *pOy* *top-edge-2*»)

•• Draw a left-hand child arrow
(do-arrows»

;; Increment depth. Divide top edge in half. Bind new
;; coordinates for top right point of next arrow.

(let «*depth* (1+ *depth*»
(*top-edge* *top-edge-2*)
(*pOx* (- *pOx* *top-edge-2*»
(*pOy* (+ *top-edge-4* (- *pOy* *top-edge*»»

;; Draw a right-hand child arrow
(do-arrows»»)

We recompile do-arrows (using c-sh-C), run the program again,
and obtain the results shown in figure 9. The small arrows now
appear to be the right size, and the number of recursion levels is
correct. The problem seems to lie in the positioning of the arrows,
or the calculation of the new values for *pOx* and *pOy*. On close
inspection, we see that the x-coordinates look correct, but the y­
coordinates are wrong. Instead of obtaining the new value of
pOy by subtracting *top-edge-2* from the old *pOy*, we should
subtract *top-edge-4* from *pOy*. We change the definition of
do-arrows:

BB

Program Development Utilities February 19B5

(defun do-arrows ()

#11

11#
»)

(let «*depth* (1+ *depth*»
(*top-edge* *top-edge-2*)
(*pOx* (+ *top-edge-4* (- *pOx* *top-edge*»)
(*pOy* (- *pOy* *top-edge-4*»)

•• Draw a left-hand child arrow
(do-arrows»

;; Increment depth. Divide top edge in half. Bind new
;; coordinates for top right point of next arrow.

(let «*depth* (1+ *depth*»
(*top-edge* *top-edge-2*)
(*pOx* (- *pOx* *top-edge-2*»
(*pOy* (+ *top-edge-4* (- *pOy* *top-edge*»»

•• Draw a right-hand child arrow
(do-arrows»»)

When we recompile do-arrows and run the program again, we
obtain the results shown in figure 10. The first recursive function
call is now correct. Looking at the arguments in the second
function call, we see that the same error exists in the calculation of
the new *pOx*: We should subtract * top-edge-4 * , not
top-edge-2, from the old *pOx*. We make the change, remove
the # II and II #, and recompile do-arrows. We obtain the results
shown in figure 1.

Example
Figure 4 shows a split screen, with graphic output in the upper
window and source code in the lower. To adjust the size of the
graphic for the smaller window, we have to change the arguments
to draw-arrow-graphic when we call that function from
do-arrow. We want to keep a record of the arguments we use to
produce a full-screen figure. We can make a comment of the call to
draw-arrow-graphic that uses full-screen arguments:

(defun do-arrow ()
(setq *dest* (make-instance 'screen-arrow-output»
(send terminal-io ':clear-screen)
(draw-arrow-graphic 1280 1800 1800»
(draw-arrow-graphic 640 1300 1800»

89

February 1985 Program Development Tools and Techniques

NIL •

Li ~p Li ~tener 1

ron

Figure 8. Output resulting from a faulty attempt to outline the small arrows
recursively.

90

Program Development Utilities

NIL •

February 1985

Figure 9. Output resulting from a faulty attempt to outline the small arrows
recursively, with the second function call commented out.

91

February 1985 Program Development Tools and Techniques

NIL
I

L1 sp L1 stener 1

ron : y-

Figure 10. Output resulting from a corrected attempt to outline the small arrows
recursively, with the second function call commented out.

92

Program Development Utilities February 1985

4.4 Tracing and Stepping

4.4.1 Tracing
When a program runs but behaves unexpectedly, you might be
calling functions in the wrong sequence or passing incorrect
arguments. Tracing function calls can help detect this sort of
problem. By default, tracing prints a message, indented according
to the level of recursion, on entering and leaving a function. It also
prints the arguments passed and the values returned.

You can invoke tracing in three ways:

• Click on [Trace] in the System menu
• Use Trace (M-X) in Zmacs

• Use the trace special form

[Trace] and Trace (M-X) pop up a menu of options, including
stepping and inserting breakpoints. You can use these options with
trace, too, but the syntax is complex. Table 1 summarizes the
correspondence between trace menu items and trace options. For
a description of the options: See the section "Options to trace",
page 276.

Example
Suppose that we had begun writing the recursive function calls in
do-arrows with the following code, passing arguments to
do-arrows instead of binding the special variables:

(defun draw-arrow-graphic (*top-edge* *pox* *pOy*)

(draw-big-arrow)
(do-arrows 0 *top-edge-2* (- *pOx* *top-edge-2*) (- *pOy* *top-edge-2*»)

February 1985

93

Program Development Tools and Techniques

(defun do-arrows (*depth* *top-edge* *pOx* *pOy*)
;; Don't exceed maximum recursion level
(when « *depth* *max-depth*)

;; Bind new values for half and one-fourth of top edge
(let «*top-edge-2* (II *top-edge* 2»

(*top-edge-4* (II *top-edge* 4»)
;; Draw a small arrow
(draw-arrow)
;; Draw a left-hand child arrow, dividing top edge in half,
;; incrementing depth, and passing new coordinates for top
;; right point
(do-arrows *top-edge-2* (1+ *depth*)

(+ *top-edge-4* (- *pOx* *top-edge*»
(- *pOy* *top-edge-4*»

" Draw a right-hand child arrow, dividing top edge in half,
" incrementing depth, and passing new coordinates for top
;; right point
(do-arrows *top-edge-2* (1+ *depth*) (- *pOx* *top-edge-4*)

(+ *top-edge-4* (- *pOy* *top-edge*»»»

This code produces only the first of the small arrows. Again,
something appears to be wrong with the recursive function calls.
Using Trace (r.-.-X), we trace calls to do-arrows. We run the
program again, and the following trace output appears:

(1 ENTER DO-ARROWS (0 640 1160 1160»
(2 ENTER DO-ARROWS (320 1 680 1000»
(2 EXIT DO-ARROWS NIL)
(2 ENTER DO-ARROWS (320 1 1000 680»
(2 EXIT DO-ARROWS NIL)

(1 EXIT DO-ARROWS NIL)
NIL

The problem here is immediately apparent: The order of the first
two arguments in the recursive function calls is reversed. We are
passing the new value of *top-edge* as the new value of * depth *.
Because this value exceeds that of *max-depth*, the function
returns after the first recursive call.

Reference
Trace (r.-.-X) Traces or untraces a specified

function. Prompts for the name
of a function to trace and pops
up a menu of trace options.

94

Program Development Utilities February 1985

4.4.2 Stepping

[Trace] (from the System menu) Traces or untraces a specified
function. Prompts for the name
of a function to trace and pops
up a menu of trace options.

(trace (:function function-spec-l option-l option-2 d.:.:.)
Enables tracing of one or more
functions. If {unction-spec is a
symbol, the keyword :function is
unnecessary. An argument can
also be a list whose car is a list of
function names and whose cdr is
one or more options. In this
case, all functions in the list are
traced with the same options.
With no arguments, returns a list
of functions being traced.

(untrace (:function function-spec-l) .:.:.:,)
Disables tracing of one or more
functions. If {unction-spec is a
symbol, the keyword :function is
unnecessary. With no
arguments, untraces all functions
being traced.

When a program behaves unexpectedly and tracing doesn't reveal
the problem, you might step through the evaluation of a function
call. You can step through function execution by using step, [Step]
from a trace menu, or the :step option for trace.

You can step through the execution of a function only if it is
interpreted, not compiled. If you want to step through execution of
a compiled function, read the definition into a Zmacs buffer and use
a Zmacs command (such as c-sh-E) to evaluate it. See the section
"Evaluation and the Editor", page 75.

The Stepper prints a partial representation of each form evaluated
and the values returned. A back arrow (..) precedes the
representation of each form being evaluated. A double arrow (t)
precedes macro forms. A forward arrow (..) precedes returned
values.

After printing, the Stepper waits for a command before proceeding
to the next step. Stepper commands allow you to specify the level
of evaluation to be stepped, escape to the editor, or enter a Lisp

95

February 1985 Program Development Tools and Techniques

Table 1. Trace Menu Items and trace Options

Trace menu item trace option

[Cond break before] :break predicate

[Break before] :break t

[Cond break after] :exitbreak predicate

[Break after] :exitbreak t

[Error] :error

[Step] :step

[Cond before] :entrycond predicate

[Cond after] :exitcond predicate

[Conditional] :cond predicate

[Print before] :entryprint form

[Prin t after] :exitprint form

[Print] :print form

[ARGPDL] :argpdl pdl

[Wherein] :wherein (unction

[Per Process] :per-process process

[Untrace]

:entry list

:exit list

:arg :vaIue : both :nil

Description

Enters breakpoint on function entry
if predicate not nil

Enters breakpoint on function entry

Enters breakpoint on function exit
if predicate not nil

Enters breakpoint on function exit

Enters Debugger on function entry

Steps through (interpreted) function
execution

Prints trace output on function
entry if predicate not nil

Prints trace output on function
exit if predicate not nil

Prints trace output on function
entry and exit if predicate not nil

Prints value of form
in trace entry ou tpu t

Prints value of form
in trace exit output

Prints value of form in
trace entry and exit output

On function entry, pushes list
of function name and args onto
pdl; pops list on function exit

Traces function only when
called within {unction

Traces function only in
process

Calls untrace on function

Prints values of forms in
list on function entry

Prints values of forms in
list on function exit

Controls printing of args
on function entry and values
on function exit

96

Program Development Utilities February 1985

breakpoint loop. For a list of commands, press HELP inside the
Stepper, or: See the section "Stepping Through an Evaluation",
page 287. Following are some basic Stepper commands:

Command

c-N

SPACE

c-U

c-B

c-E

c-X

Example

Action

Evaluate until next thing to print

Evaluate until next thing to print at this level
(don't step at lower levels)

Evaluate until next thing to print at next level up
(don't step at current and lower levels)

Enter breakpoint loop

Enter Zmacs

Evaluate until finished (exit from stepping)

We have the same problem with the function do-arrows as we
described elsewhere: See the section "Tracing: Program
Development Tools and Techniques", page 92. The program
outlines only the largest of the small arrows, indicating a problem
with the recursive function calls. Instead of just tracing
do-arrows, we step through its evaluation. We first use c-sh-E to
evaluate the definition of do-arrows. We then use [Step] in the
menu that Trace (M-X) pops up to trace and step through
do-arrows. We run the program. The Stepper waits for a
command before evaluating each form in do-arrows. We press
SPACE to skip to the next form at the same level. When we come
to the comparison of *depth* and *max-depth* in the recursive
calls, we want to see each level of evaluation. We press c-N at each
of these steps. The tracing and stepping output looks as follows:

February 1985

97

Program Development Tools and Techniques

(1 ENTER DO-ARROWS (0 640 1160 1160»
t (WHEN « *DEPTH* *MAX-DEPTH*) (LET «*TOP-EDGE-2* (II *TOP-EDGE*
~ (COND «< *DEPTH* *MAX-DEPTH*) (PROGN (LET «*TOP-EDGE-2* (II *T

(2 ENTER DO-ARROWS (320 1 680 1000»
t (WHEN « *DEPTH* *MAX-DEPTH*) (LET «*TOP-EDGE-2* (II *TOP-EDGE*
~ (COND «< *DEPTH* *MAX-DEPTH*) (PROGN (LET «*TOP-EDGE-2* (II *T

~ « *DEPTH* *MAX-DEPTH*)
~ *DEPTH* ... 320
~ *MAX-DEPTH* ... 7

~ « *DEPTH* *MAX-DEPTH*) ... NIL
~ (COND «< *DEPTH* *MAX-DEPTH*) (PROGN (LET «*TOP-EDGE-2* (II *T ... NIL

(2 EXIT DO-ARROWS NIL)
(2 ENTER DO-ARROWS (320 1 1000 680»

t (WHEN « *DEPTH* *MAX-DEPTH*) (LET «*TOP-EDGE-2* (II *TOP-EDGE*
~ (COND «< *DEPTH* *MAX-DEPTH*) (PROGN (LET «*TOP-EDGE-2* (II *T

~ « *DEPTH* *MAX-DEPTH*)
~ *DEPTH* ... 320
~ *MAX-DEPTH* ... 7

~ « *DEPTH* *MAX-DEPTH*) ... NIL
~ (COND «< *DEPTH* *MAX-DEPTH*) (PROGN (LET «*TOP-EDGE-2* (II *T ... NIL

(2 EXIT DO-ARROWS NIL)
(1 EXIT DO-ARROWS NIL)
NIL

In this example, stepping shows even more clearly than tracing that
the value of *depth* is wrong in the recursive function calls.

Reference
(step form) Steps through the evaluation of

form

Trace (M-X) [Step] Steps through the execution of a
function being traced.

[Trace I Step] (from the System menu)
Steps through the execution of a
function being traced.

(trace (:function function-spec :step»
Steps through the execution of a
function being traced. If
function-spec is a symbol, the
keyword :function is
unnecessary.

98

Program Development Utilities February 1985

4.5 Breakpoints

In debugging a program, you might want to interrupt function execution to enter a
Lisp breakpoint loop or the Debugger. Entering the Debugger is usually more
useful, for there you can examine the stack, return values, and take other steps in
addition to evaluating forms.

You can use two general kinds of breakpoints:

• You can edit into a definition a call to dbg (with no arguments) or
to break. The advantage of this kind of breakpoint is that, as
with stepping, you can interrupt execution within the function.
The disadvantage is that you have to edit and recompile the
definition to insert and remove the breakpoint. If you redefine the
function after inserting the breakpoint, the breakpoint might be
lost.

• You can use breakon or one of the error or break options to
trace. These features create encapsulations, functions that contain
the basic definitions of the functions to which you want to add
breakpoin ts. For more on encapsulations: See the section
"Encapsulations" in Reference Guide to Symbolics-Lisp. The
advantage of this kind of breakpoint is that when you recompile or
otherwise redefine the function, only the basic definition is replaced,
and the breakpoints remain. The disadvantage is that you can
interrupt function execution only on entry or exit, not within the
function.

You insert these breakpoints by calling breakon or trace from a
Lisp Listener or by using the trace menu; you remove them by
calling unbreakon or untrace. When you break on entering
function execution, just before applying the function to its
arguments, the variable arglist is bound to a list of the arguments.
When you break on exiting from function execution, just before the
function returns, the variable values is bound to a list of the
returned values.

From either a breakpoint loop or the Debugger, RESUME allows the program to
continue, and ABORT returns control to the previous break or, if none exists, to top
level.

Example
We decide to break on entry to do-arrows and enter the Debugger
while tracing the function. We use Trace (M-X) and then [Error]
from the trace menu. We select a Lisp Listener and run the
program. On the first entry to do-arrows we enter the Debugger,
with the following message:

February 1985

99

Program Development Tools and Techniques

» TRACE Break: DO-ARROWS entered.

DO-ARROWS: (encapsulated for TRACE)
Rest arg (ARGlIST): (0 640 1160 1160)

s-A, RESUME: Proceed without any special action
s-B, ABORT: lisp Top level in lisp listener 1

Reference
(dbg process)

(break ffig conditional-form)

Enters the Debugger in process.
With an argument of t, finds a
process that has sent an error
notification. With no argument,
enters the Debugger as if an
error had occurred in the current
process.

Enters a Lisp breakpoint loop
(identified as "breakpoint tag") if
conditional-form is not nil or is
not supplied.

(breakon function-spec conditional-form)
Passes control to the Debugger
on entering function-spec if
conditional-form is not nil or is
not supplied. With no
arguments, returns a list of
functions with breakpoints
specified by breakoD.

(unbreakon function-spec conditional-form)

[Error] (from a trace menu)

Turns off the breakpoint
condition specified by
conditional-form for function-spec.
If conditional-form is not
supplied, turns off all breakpoints
specified by breakon for
function-spec. With no
arguments, turns off all
breakpoints specified by breakon
for all functions.

Passes control to the Debugger
on entering a function being
traced.

100

Program Development Utilities February 1985

[Cond break before] (from a trace menu)
Prompts for a predicate. Displays
trace entry information and
enters a Lisp breakpoint loop on
entering a function being traced
if the predicate is not nil.

[Cond break after] (from a trace menu)
Prompts for a predicate. Displays
trace exit information and enters
a Lisp breakpoint loop on exiting
from a function being traced if
the predicate is not nil.

(trace (:function function-spec :error»
Passes control to the Debugger
on entering a function being
traced. If function-spec is a
symbol, the keyword :function is
unnecessary.

(trace (:function function-spec :break predicate»
Prints trace entry information
and, if the value of predicate is
not nil, enters a Lisp break loop
on entering the function. If
function-spec is a symbol, the
keyword :function is
unnecessary.

(trace (:function function-spec :exitbreak predicate»

4.6 Expanding Macros

Prints trace exit information and,
if the value of predicate is not
nil, enters a Lisp break loop on
exiting from the function. If
function-spec is a symbol, the
keyword :function is
unnecessary.

Sometimes a program bug appears to stem from unexpected behavior by a macro.
Seeing how a macro form expands can help find the bug. To be sure that a macro
does what you want it to, you might also want to create and expand a macro form
soon after defining the macro and compiling the definition.

You can expand a macro form in a Zmacs buffer using Macro Expand Expression
(c-sh-M). This command expands the form following point, but not any macro forms
within it. To expand all subforms, use Macro Expand Expression All (,,-sh-t1). You can

101

February 1985 Program Development Tools and Techniques

also expand macro forms with l:nexp, which enters a loop to read and expand one
form after another.

Example
We have just written code to stripe the shafts of the small arrows,
drawing stripes with uniform spacing and density. We produce the
results shown in figure 11. We evidently have a problem with the
function draw-arrow-shaft-stripes. The code for this function is
as follows:

(defun draw-arrow-shaft-stripes
(left-x top-y right-x bottom-y)

;; Find y-coord of starting point of stripe. Don't go
;; below the bottom of the triangle.
(loop for start-y from top-y by *stripe-distance* above bottom-y

;; Find x-coord of ending point of the stripe
for end-x from right-x by *stripe-distance*
;; Draw a stripe
do (draw-arrow-shaft-lines

left-x start-y end-x bottom-y»)

The bug stems from incorrect coordinates for the endpoints of the
shaft stripes. The beginning coordinates (left-x and start-y) are
correct. The ending y-coordinate (bottom-y) looks right, but the
ending x-coordinate (end-x) is wrong. The problem might not be
evident from looking at the code, which consists entirely of a loop
form. We move to the beginning of the loop form and expand it,
using c-sh-M:

«LAMBDA (START-V Gl049 Gl050)
«LAMBDA (END-X Gl051)

(PROG NIL
(AND (NOT (GREATERP START-V Gl050» (GO SI:END-LOOP»

SI:NEXT-LOOP
(DRAW-ARROW-SHAFT-LINES LEFT-X START-V END-X BOTTOM-V)
(SETQ START-V (DIFFERENCE START-V Gl049»
(AND (NOT (GREATERP START-V Gl050» (GO SI:END-LOOP»
(SETQ END-X (PLUS END-X Gl051»
(GO SI:NEXT-LOOP)

SI:END-LOOP
»

RIGHT-X
STRIPE-DISTANCE»

TOP-V
STRIPE-DISTANCE
BOTTOM-V)

102

Program Development Utilities February 1985

NIL
I

Li ~p Li ~t~n~r 1

08/16/83 19:0:1 ro~

Figure 11. Output from the program with a bug in the function
draw-arrow-shaft-stripes.

February 1985

103

Program Development Tools and Techniques

The expansion shows the lambda-bindings and prog form that the
loop macro creates. We can see that the error is in the setting of
end-x within the prog form: We are incrementing end-x by
stripe-distance, when we should be decrementing it. The
problem is in our use of a loop keyword. Instead of writing

for end-x from right-x by *stripe-distance*

we should have written

for end-x downfrom right-x by *stripe-distance*

We make the change and recompile draw-arrow-shaft-stripes.
Now if we expand the loop form, we see that we are decrementing
end-x:

«LAMBDA (START-V 61062 61063)
«LAMBDA (END-X 61064)

(PR06 NIL
(AND (NOT (6REATERP START-V 61063» (60 SI:END-LOOP»

SI:NEXT-LOOP
(DRAW-ARROW-SHAFT-lINES lEFT-X START-V END-X BOTTOH-V)
(SETQ START-V (DIFFERENCE START-V 61062»
(AND (NOT (6REATERP START-V 61063» (60 SI:END-lOOP»
(SETQ END-X (DIFFERENCE END-X 61064»
(60 SI:NEXT-LOOP)

SI:END-lOOP
»

RI6HT-X
STRIPE-DISTANCE»

TOP-V
STRIPE-DISTANCE
BOTTOH-V)

Reference
Macro Expand Expression (c-sh-M)

Expands the macro form following
point. Does not expand subforms
within the form.

Macro Expand Expression All (.... sh-M)
Expands the macro form following
point and all subforms within the
form.

104

Program Development Utilities February 1985

(mexp)

4.7 The Inspector

Enters a loop: prompts for a
macro form to expand, expands it,
and prompts for another macro
form. Exits from the loop on nil.

The Inspector is a window-based tool that combines the describe and disassemble
functions. Invoke it with inspect, SELECT I, or [Inspect] from the System menu.
If you use inspect, the Inspector is not a separate activity from the Lisp Listener in
which you invoke it. In that case you cannot use SELECT L to return to the Lisp
Listener; you must click on [Exit] or [Return] in the Inspector menu.

The Inspector displays information about an object and lets you modify the object.
It displays information for the last object inspected in the bottom window. It
displays information for the two previous objects in the windows above the bottom
one. It maintains a mouse-sensitive listing of all inspected objects in the history
window. These are some of its useful features:

• The information the Inspector displays depends on the object's
type. For a symbol, it displays a representation of the value,
function, property list, and package. For a symbol's flavor property,
it displays information about instance variables, component and
dependent flavors, the message handler, init keywords, and the
flavor property list. For a compiled function, it displays the
disassembled assembly-language code that represents the compiler
output.

• The Inspector is especially useful for examining data structures. It
displays the names and values of the slots of structures and, unlike
describe, the elements of (one-dimensional) arrays. For instances
of flavors, the Inspector displays the names and values of instance
variables.

• Within each display, most representations of objects are mouse
sensitive. If you click on an object representation, you inspect that
object. For example, you can inspect elements of lists. If an
element of an array is itself an array, you can inspect the second
array. In this way you can follow long paths in data structures.

• You can change a value by using the [Modify] option in the
Inspector's menu. You can return a value when you exit the
Inspector by clicking on [Return].

For more on the Inspector: See the section "The Inspector", page 293.

Example
Suppose we had represented each arrow as an instance of a
structure (defined with defstruct) instead of a collection of special-

February 1985

105

Program Development Tools and Techniques

variable values. We could have called the structure representing
the small arrows arrow and set the value of a special variable,
arr, to each instance of the structure as we created it.

Figure 12 shows an Inspector window for the last arrow in the
figure. We first run the program in a Lisp Listener, then invoke
the Inspector using SELECT 1. Because we typed (pkg-goto
, graph i cs) in the Lisp Listener, the Inspector's package is
graphics. We type *arr* to the interaction pane at the top of the
frame. The window at the bottom of the frame displays the names
and values of the structure slots. We can change these values by
using the [Modify] menu option.

Example
Suppose we had represented each arrow as an instance of a flavor
and defined most of our computation functions as flavor methods
instead of simple functions. We could have called the flavor
representing the small arrows arrow and set the value of *arr* to
each instance of the flavor as we created it.

Figure 13 shows an Inspector window for the last arrow in the
figure. As with our structure example, we first run the program
and then invoke the Inspector to evaluate *arr* and inspect the
flavor instance that is its value. The Inspector displays the names
and values of instance variables and a representation of the flavor's
message handler.

We next click on the mouse-sensitive representation of the message
handler. The Inspector displays a representation of the function
spec for the method that handles each message. If we click on the
function spec for the :compute-dens method of flavor
basic-arrow, the Inspector displays the method's disassembled
code.

Reference
(inspect object)

SELECT I

Selects an Inspector window in
which to inspect object.

Selects an Inspector window.

[Inspect] (from the System menu)Selects an Inspector window.

(disassemble function) Prints a representation of the
assembly-language instructions for
a compiled function.

Disassemble (..... -x) Prompts for the name of a
compiled function and displays a

106

Program Development Utilities February 1985

arr •
Top of Hisrory Exit

"<ARRO~ -33247021> Return
Modify
DeCache
Clear
Set ,

Bottom of aisrory
Top of object

Empty

Bottom of object
Top of object

Empty

Bottom of object

Top of obiect
#(ARROW -33247021)
NaMed 5tructure of type ARRO~

DEPTH: 6
TOP-EDGE: 10
TOP-EDGE-2: 5
TOP-EDGE-4: 2
><2: 825
STRIPE-D: 10
P0X: 845
P0V: 215
PIX: 835
PlY: 215
P2X: 837
P2V: 213
P5X: 843
P5V: 207
P6H: 845
P6V: 205

~

Bottom of object

value. Right flnd5 functlon defimtion. ~hoo:5e a value by point1ns at the
GRAPHICS: Tyi_ e8~17~83 18:23:32 rOM

Figure 12. The Inspector window: inspecting an instance of a structure.

February 1985

107

Program Development Tools and Techniques

representation of the function's
assembly-language instructions.

108

Program Development Utilities February 1985

'err' ..
Top of History Exit

U<ARRO~ 10020042> Return
Modify

DeCache
Clear
Set ,

Jlottom of History

Top 0' object
~ty

Jlottom 0' object
Top 0' object

~ty

Bottom. of object
Top of object

#<AfflOW 10020042)
An Instance of ARRO~. m<NessaQe handler for ARR9tB
DEPTH: 6
TOP-EDGE: Ie
TOP-EDGE-2: 5
TOP-EDGE-4: 2
X2: 825
STRIPE-D: 10
P0X: 845
P0Y: 215
PIX: 835
PlY: 215
P2X: 837
P2Y: 213
P5X: 843
P5V: 2e7
P6X: 845
P6Y: 205

I

Bottom of object

Lhoose a value b ointin 9 at the value. Ri ht finds function definition.
Tyl

Figure 13. The Inspector window: inspecting an instance of a flavor.

109

February 1985 Program Development Tools and Techniques

arr •
Top of History

"<ARRO~ 10020042>
"<Message handler for ARRO~>

Bottom of History

Top of obi~ct
~mpty

Bottom of object
Top of obj~ct

#<ARAOW 10020042)
An instance of ARRO~. "<Message handler for ARRO~>

DEPTH: 6
TOP-EDGE: 10
TOP-EDGE-2: 5

More bdow

Exit
Return
Modify
DeCache
Clear
Set ,

··:---------:T=-o-p-o-::t~o-:b"':"i~-c":"t ------------------1
U<Message handler for ARROW>
: COMPUT E - DaiS: r:-:"I!t""'" "T(--:: M=E""'f'-:-H=o=n-=B A""", S=I"'""C"'""-"""'A=R=R=O~"""-:-'C""O=M""'P"""U'""'t E=--...... D""'E""N=S""")-'t
:COMPUTE-NLINES: U'(:METHOD BASIC-ARRO~ :COMPUTE-NLINES)
:COMPUTE-POINTS: U'(:METHOD BASIC-ARRO~ :COMPUTE-POINTS)
:COMPUTE-STRIPE-D: U'(:METHOD 8ASIC-ARRO~ :COMPUTE-STRIPE-D)
:COMPUTE-TOP-EDGES: U'(:METHOD BASIC-ARROW :COMPUTE-TOP-EDGES)
DESCRIBE: U'(:METHOD SI:VANILLA-FLAVOR DESCRIBE)
:DRAW-ARRO~: U' (:METHOD 8ASIC-ARRO~ :DRA~-ARRO~)
:DRAW-ARROW-SHAFT-LINES: U'(:METHOD ARROW-MIXIN :DRAW-ARRO~-SHAFT-LINES)
:DRAW-ARROW-SHAFT-STRIPES: U'(:METHOD ARROW-MIXIN :DRA~-ARROW-SHAFT-STRIPES)
:DRAW-ARROWHEAD-LINES: U'(:METHOD BASIC-ARROW :DRAW-ARROWHEAD-LINES)
:DRAW-OUTLINE: U'(:METHOD ARROW-MIXIN :DRA~-OUTLINE)
:EVAL-INSIDE-YOURSELF: U'(:METHOD SI:VANILLA-FLAVOR :EVAL-INSIDE-YOURSELF)
:FUNCALL-INSIDE-YOURSELF: U'(:METHOD SI:VANILLA-FLAVOR :FUNCALL-INSIDE-YOURSELF)
GET-HANDLER-FOR: U'(:METHOD SI:VANILLA-FLAVOR GET-HANDLER-FOR)
:OPERATION-HANDLED-P: U'(:METHOD SI:VANILLA-FLAVOR :OPERATION-HANDLED-P)
:POX: U'(:METHOD BASIC-ARROW :POX)
:POY: U'{ :METHOD BASIC-ARRO~ :POY)
:PRINT-SELF: U'(:METHOD SI:VANILLA-FLAVOR :PRINT-SELF)
:SEND-IF-HRNDLES: U'(:METHOD SI:VANILLA-FLAVOR :SEND-IF-HANDLES)
:SET-STRIPE-D: U'(:METHOD BASIC-ARROW :SET-STRIPE-D)
:STRIPE-ARROW-SHAFT: U'(:METHOD ARROW-MIXIN :STRIPE-ARROW-SHAFT)
:STRIPE-ARROWHEAD: U'(:METHOD BASIC-ARRO~ :STRIPE-ARRO~HEAD)

More ~/ow
Choose a value by pointing at the value. Right finds function definition.
08/20/83 17:09:42 ro~ GRAPHICS: Tyi

Figure 13, continued.

110

Program Development Utilities

Top of HistOry
U<ARRO~ 10020042>
U<Me55ege hendler for ARRO~>
U'(:METHOD BASIC-ARRO~ :COMPUTE-DENS)

Bottom of History
Top 01 object

#<AfflOW 10020042)
An In5tence of ARRO~. U<Me55ege hendler for ARRO~>

DEPTH: 6
TOP-EDGE: 10
TOP-EDGE-2~ 5

More below
Top 01 object

#<Message handler for ARROW)
:COMPUTE-DENS: U'(:METHOD BASIC-ARRO~ COMPUTE-DENS)
:COMPUTE-NLINES: U'(:METHOD BASIC-ARRO~ COMPUTE-NLINES)
:COMPUTE-POINTS: U'(:METHOD BASIC-ARRO~ COMPUTE-POINTS)
:COMPUTE-STRIPE-D: U'(:METHOD BASIC-ARRO~ COMPUTE-STRIPE-D)
:COMPUTE-TOP-EDGES: U'(:METHOD BASIC-ARRO~ COMPUTE-TOP-EDGES)

Top of object
#<DTP-GOMPIlED-FUNGTION (:METHOD BASIC-ARROW :COMPUTE-DENS) 46660073)

B ENTRY: 4 REQUIRED, B OPTIONAL
1 PUSH-INDIRECT *Dl*
2 PUSH-INDIRECT *D2*
3 PUSH-INDIRECT *Dl*
4 BUILTIN --INTERNAL STACK
5 PUSH-LOCAL FPI3 ;X
6 PUSH-INSTANCE-VARIABLE 2 ;PBX
7 BUILTIN --INTERNAL STACK

IB PUSH-INSTANCE-VARIABLE 15 ;X2
11 PUSH-INSTANCE-VARIABLE 2 ;PBX
12 BUILTIN --INTERNAL STACK
13 BUILTIN FLOAT STACK
14 BUILTIN ~-INTERNAL STACK
15 BUILTIN *-INTERNAL STACK
16 BUILTIN +-INTERNAL STACK
17 RETURN-STACK

Bottom of object
Jhoo5e e velue by pointing et the velue. Right find5 function definition.

GRAPHICS: Tyl

Figure 13, concluded.

February 1985

Exit
Return
Modify
DeCeche
Cleer
Set ,

111

February 1985 Program Development Tools and Techniques

5. Using Flavors and Windows

All Lisp Machine Lisp programmers must know how to use flavors and the window
system in at least an elementary way. Flavors are the basis of a powerful,
non hierarchical kind of object-oriented programming. Even if you don't use them
extensively, the system code does. Applications that include screen display or user
interaction must deal with the window system, which is itself built on flavors.

In this chapter we present a brief introduction to using flavors and windows. We do
not discuss the concepts and organization of flavors and the window system in any
detail. Instead, we modify the output module of our example program to show some
simple uses of flavors, windows, and menus. We show basic examples of the
following features:

• Using base, moon, and instantiable flavors and :daemon method
combination

• Creating a simple window and associating it with a process
• Producing LGP output

• Altering values nsing a choose-variable-values window

• Signalling a condition and proceeding

We also present some editor commands and Lisp functions for finding information
about flavors and windows. Among the issues we do not discuss in any detail are
the following:

• Using types of method combination other than :daemon

• Interacting with the mouse process

• Creating frames
• Specifying fonts

• Using menus

For more information on flavors and windows, read the following:

• On flavors: See the section "Flavors" in Reference Guide to
Symbolics-Lisp.

• On windows: See the section "Using the Window System" in
Programming the User Interface.

• On menus: See the section "Window System Choice Facilities" in
Programming the User Interface.

• On conditions and errors: See the section "Conditions" in Reference
Guide to Symbolics-Lisp.

112

Program Development Utilities February 1985

5.1 Program Development: Modifying the Output Module

As now written, the output routine5 of our example program consist of a flavor and
methods that produce lines on the stream to which terminaI-io is bound:

(defflavor screen-arrow-output
«scale-factor 2.5»
(»

(defmethod (screen-arrow-output :show-lines)
(x y &rest x-y-pairs)

(loop for xO = (send self ':compute-x x) then xl
for yO = (send self ':compute-y y) then yl
for (xl yl) on x-y-pairs by #'cddr
do (setq xl (send self ':compute-x xl)

yl (send self ':compute-y yl»
(send terminal-io ':draw-line

xO yO xl yl tv:alu-ior t»)

(defmethod (screen-arrow-output :compute-x) (x)
(fixr (II x scale-factor»)

(defmethod (screen-arrow-output :compute-y) (y)
(fixr (- 800 (II y scale-factor»»

We want to be able to produce output on the screen, an LGP, or a file. For this we
need a simple device-independent graphics system that uses generic operations. The
central operation is : show-lines , which receives endpoint coordinates from the
calculation module and produces lines on the appropriate output stream. Our
general strategy for creating the output options is as follows:

1. Define a flavor and methods to calculate the position of the arrow
figure on the screen or page. We can use this moon with flavors
that produce any kind of output.

2. Define flavors and methods to produce screen output. We build the
instantiable flavors on tv:window and instantiate them with
tv:make-window. We define two kinds of arrow window flavors:

• A basic flavor that performs output and redisplays the window after
changes.

• A flavor, which we instantiate, that is built on the basic window
and includes a moon to convert LGP coordinates to screen
coordinates.

3. Define a flavor and methods to produce LGP or file output.

4. Define a top-level function that uses a choose-variable-values window

February 1985

113

Program Development Tools and Techniques

to select the type of output and alter some variables. The function
calls tv:make-window or makes an instance of the LGP flavor,
depending on the output type.

5. Change the arrow-window flavors to allow multiple windows,
associate each window with its own process, and allow the user to
modify the characteristics of the figure in each window.

6. Define a function to check for mistakes when the user changes the
values of variables. We define condition flavors for the incorrect
choices. We define handlers for the conditions and use signal to
signal them. We allow the user to proceed by supplying new values
for the variables.

We want to preserve modularity in writing these new routines. We define the flavor
that positions the arrow figure so that we can use it with any sort of output. We
keep the operations that transform LGP to screen coordinates separate from the
basic window operations. We define the routines that handle bad variable values as
separate flavors and functions. These precautions make it easy to define new kinds
of windows or to check for errors in other variable values in the future.

5.1.1 A Mixin to Position the Figure
No matter what the output device, we want to be sure that the
figure fits within the bounds of the page or window and is centered
within the page or window. We define a mixin flavor,
arrow-parameter-mixin, with methods to perform these
calculations. We include this flavor in all flavors that produce
output for the figure.

We define five instance variables to hold the parameters. Three of
these, top-edge, right-x, and top-y, are the arguments we must
pass to the calculation module. We make these three instance
variables gettable so that we can retrieve them by sending messages
to an instance of the dependent flavor. The other two instance
variables are the width and height of the page or window in the
appropriate units, either LGP or screen pixels.

(defflavor arrow-parameter-mixin
(width height top-edge right-x top-y)
()

(:gettable-instance-variables top-edge right-x top-y)
(:documentation :mixin
"Provides parameters for size and position of figure.

Instance variables hold width and height of page or window;
length of top edge of figure; coordinates of top right point
of figure."»

114

Program Development Utilities February 1985

The task of this flavor is to perform a generic operation, which we
call :compute-parameters. This operation consists of separate
computations for top-edge, right-x, and top-yo We define primary
methods for these operations here, using coordinates with the origin
at bottom left. Flavors that mix in this one can add daemons,
whoppers, or their own primary methods to accommodate other
coordinate systems and scale factors.

We perform these operations as follows:

1. Determine the width and height of the page or window. The
details of this operation are the business of other flavors. We
specify a required method, :compute-width-and-height, for any
flavor that mixes in this one. We send self a
:compute-width-and-height message to set the instance variables.

2. Calculate a provisional value for top-edge so that the figure fits
within the smaller dimension of the page or window. We allow the
user to specify, by setting the global variable *fill-proportion*,
what fraction of this dimension the figure should fill.

3. Adjust the top edge so that its value is at least 128 and is a
multiple of 128 if larger. This adjustment ensures that stripe
spacing is continuous throughout the levels of the figure.

4. Calculate right-x and top-y so that we center the figure within
the page or window.

The complete code for this flavor and its methods is as follows:

(defvar *fill-proportion* 0.9
"Proportion of smaller dimension to be filled by figure")

February 1985

115

Program Development Tools and Techniques

(defflavor arrow-parameter-mixin
(width height top-edge right-x top-y)
()

(:gettable-instance-variables top-edge right-x top-y)
(:required-methods :compute-width-and-height)
(:documentation :mixin
"Provides parameters for size and position of figure.

Instance variables hold width and height of page or window;
length of top edge of figure; coordinates of top right point
of figure. Methods calculate size and position of figure by
centering it within the page or window and making it fill no
more than the specified proportion of the smaller dimension.
The methods use a coordinate system with origin at bottom left;
other mixins must correct for this if output is going to a
window. Other flavors must also provide a method for calculating
width and height of the page or window. This flavor should be
mixed into any instantiable flavor that produces output for the
arrow graphic."»

; ; ;

; ; ;

; ; ;

Method controlling calculation of size and position of figure.
Sends messages to self to calculate width and height of page
or window. length of top edge of figure. and coordinates of
figure's top right point. These are separate methods so that
other flavors can shadow them or add daemons. Another flavor

••• must provide a method to compute width and height. because
;;; this is specific to the output device.
(defmethod (arrow-parameter-mixin :compute-parameters) ()

;; Another flavor must supply method for width and height
(send self ':compute~width-and-height)
;; Make a preliminary estimate of length of top edge
(send self ':compute-top-edge)
;; Adjust top edge to make it a multiple of 128
(send self ':adjust-top-edge)
;; Calculate coordinates of top right point of figure.
;; We can't do this until we know how long top edge is.
(send self ':compute-right-x)
(send self ':compute-top-y»

116

Program Development Utilities February 1985

'" Makes a preliminary estimate of length of top edge.
;;; The top edge of the arrow is 80 percent of the horizontal
'" or vertical length of the whole figure. First finds the
'" smaller of the length or width of the page or window.
;;. Multiplies this by the proportion of this dimension that
; •• is to be filled by the figure. The result is the
'" horizontal or vertical length of the figure. Multiplies
'" this by 0.8 to get the length of the top edge.
(defmethod (arrow-parameter-mixin :compute-top-edge) ()

(setq top-edge
(fixr (* 0.8 *fill-proportion* (min width height»»)

;;; Adjusts length of top edge so it is a multiple of 128.
'" There are 64 stripes in the head of the large arrow. The
;;; calculation module divides the length of top edge by two
;;. each time it goes down another recursion level. By making
'" the original top edge a multiple of 128, we maximize
;;. continuity in striping between arrowheads and shafts and
'" among the first several levels of recursion.
(defmethod (arrow-parameter-mixin :adjust-top-edge) ()

(setq top-edge
•• Minimum length of top edge is 128
(if « top-edge 256) 128

;; Otherwise set to next lower multiple of 128
(* 128 (fix (II top-edge 128»»»

'" Calculates x-coordinate of top right point of figure.
'" Finds horizontal length of figure by dividing length of
'" top edge by 0.8. Centers the figure horizontally within
'" the page or window.
(defmethod (arrow-parameter-mixin :compute-right-x) ()

(setq right-x
(fixr (* 0.5 (+ width (II top-edge 0.8»»»

;;. Calculates y-coordinate of top right point of figure.
;;; Assumes that the origin is at bottom. Finds vertical
'" length of figure by dividing length of top edge by 0.8.
;;; Centers the figure vertically within the page or window.
(defmethod (arrow-parameter-mixin :compute-top-y) ()

(setq top-y
(fixr (* 0.5 (+ height (II top-edge 0.8»»»

5.1.2 The Basic Arrow Window
We want to build our window on tv:window, a flavor that
produces a simple window with borders, a label, and graphics. Any
arrow window we use must provide for initialization and redisplay,

February 1985

117

Program Development Tools and Techniques

determine its width and height, and supply a :show-lines method
to draw our figure.

We define a mixin flavor, basic-arrow-window-mixin, with
methods to do these things. We require that this flavor be used
with arrow-parameter-mOOn and tv:window. For the basic
window, we assume that the coordinates supplied to :show-lines
are screen coordinates, with origin at top left.

We write basic-arrow-window-mixin as follows:

1. Define the flavor. The :required-flavors option ensures that we
have access to the flavors' instance variables and that an error will
be signalled if someone makes an instance of a flavor that includes
basic-arrow-window-mOOn but not the required flavors. The
:default-init-plist option provides values for some elements of the
initialization property list in case no one else specifies them. The
:edges-from option with an argument of ':mouse allows the user
to specify the initial size and position of the window by using
mouse corners. We give an initial minimum width and height for
the window because the length of top-edge must be at least 128,
and we want the entire figure to fit inside the window.

(defflavor basic-arrow-window-mixin () ()
(:required-flavors arrow-parameter-mixin tv:window)
(:default-init-plist
:edges-from ':mouse :minimum-width 200 :minimum-height 200
:blinker-p nil :expose-p t)

(:documentation :mixin
"Provides for a basic window to display the arrow graphic.

ARROW-PARAHETER-HIXIN is needed to position the figure within
the window. This flavor assumes window coordinates, with origin
at top left."»

2. Provide a :show-lines method to draw lines on the screen. We use
essentially the same methods as in our original output module, but
now we assume that the arguments are screen coordinates. We
define separate :compute-x and :compute-y methods to transform
the coordinates so that we can shadow these methods when we
define another flavor to handle LGP coordinates. To produce the
lines we use the :draw-line method defined for
tv:graphics-mOOn, a component of tv:window. (In :daemon
method combination, when two component flavors have primary
methods for the same message, the method of the flavor listed
earlier in the component ordering shadows, or replaces, the method
of the flavor listed later. For more on method combination: See
the section "Method Combination" in Reference Guide to
Symbolics-Lisp.)

118

Program Development Utilities February 1985

;;; Receives endpoint coordinates and draws lines on a window.
'" Arguments are alternating x- and y-coordinates of the end-
;;; points of lines to be drawn. If there are more than two pairs
;;; of coordinates, assumes that the endpoint of one line is the
;;; starting point of the next. Sends messages for separate methods
'" to determine the actual coordinates. This is so that other
;;; flavors can modify the coordinates. Draws a line by sending self
;;; a :DRAW-LINE message, and so assumes that TV:GRAPHICS-HIXIN is
;;; included somewhere to provide this method.
(defmethod (basic-arrow-window-mixin :show-lines)

(x y &rest x-y-pairs)
;; First determine the starting point of the line. On
;; subsequent trips through the loop, the last endpoint
;; becomes the next starting point.
(loop for xO = (send self ':compute-x x) then xl

for yO = (send self ':compute-y y) then yl
;; "Cddr" down the list created by making all but the
;; first pair of coordinates an &rest argument
for (xl yl) on x-y-pairs by #'cddr
;; Determinp. the endpoint of the line
do (setq xl (send self ':compute-x xl)

yl (send self ':compute-y yl»
;; Draw the 1 ine
(send self ':draw-line

xO yO xl yl tv:alu-ior t»)

;;; Determines the x-coordinate of an endpoint of a line.
;;; This is a separate method so that other flavors can shadow
;;; it or add daemons to manipulate the coordinate.
(defmethod (basic-arrow-window-mixin :compute-x) (x)

(fixr x»

;;; Determines the y-coordinate of an endpoint of a line.
;;; Assumes that the argument already uses window coordinates,
'" with origin at top left. This is a separate method so that
'" other flavors can shadow it or add daemons to manipulate
'" the coordinate.
(defmethod (basic-arrow-window-mixin :compute-y) (y)

(fixr y»

3. Supply the :compute-width-and-height method required by
arrow-parameter-mixin. We use the :inside-size message to
tv:sheet, a component of tv:window. We use multiple-value to
set the instance variables width and height.

February 1985

119

Program Development Tools and Techniques

;;; Finds the inside width and height of the window.
'" Sends self an :INSIDE-SIZE message, and so assumes that
;;; TV:SHEET is included somewhere to provide this
;;; method.
(defmethod (basic-arrow-window-mixin

:compute-width-and-height) ()
(multiple-value (width height)

(send self ':inside-size»)

4. Alter the computation of top-y to take account of the screen's
origin at top left. We can do this in three ways:

• Define a new primary method for :compute-top-y to shadow the
method we defined for arrow-parameter-mixin. We would have
to be careful to place basic-arrow-window-mixin before
arrow-parameter-mixin in the list of component flavors for any
flavor we wanted to instantiate.

• Define :before and :after daemons for :compute-top-y. The
:before daemon would make top-edge negative and the :after
daemon would make it positive again. (In :daemon method
combination, :before methods for a message run before the
primary method, and :after methods run after the primary
method. If two component flavors have daemons for the same
message, the :before method of the flavor listed earlier in the
component ordering runs before the :before method of the flavor
listed later, and the :after method of the flavor listed earlier runs
after the :after method of the flavor listed later. For more on
method combination: See the section "Method Combination" in
Reference Guide to Symbolics-Lisp.

• Define a whopper for :compute-top-y. This would do the same
thing as the two daemons, except that when all the
:compute-top-y methods were combined it would run outside any
daemons. (A whopper wraps the execution of some code around
the execution of a method, running before all :before damnons and
after all :after daemons. For more on whoppers: See the special
form defwhopper in Reference Guide to Symbolics-Lisp.

We define a new primary method in this case because it repeats
relatively little code and makes the operation of the Il}ethod clearer.
If we used a whopper here, someone might mix in another flavor
with daemons that would unexpectedly run inside our whopper.

120

Program Development Utilities February 1985

", Calcu1ates y-coordinate of top right point of figure.
", Finds vertical length of the figure by dividing the length
", of top edge by 0.8. Centers the figure vertically within
", the window. Gives the result in window coordinates, with
", origin at top left. This method shadows that in
", ARROW-PARAHETER-HIXIN.
(defmethod (basic-arrow-window-mixin :compute-top-y) ()

(setq top-y
(fixr (* 0.5 (- height (II top-edge 0.8»»»

5. Calculate the figure's size and position and redisplay the window at
appropriate times. We have to recompute the figure's size and
position after the window is initialized and after its size or margins
change. We have to redisplay the figure when the window is
refreshed, but only if the window has no bit-save array or its size
has changed. Before redisplaying, we have to clear the screen if
the window has a bit-save array.
We perform these tasks by defining :after daemons for three
messages that the system can send to a window: :init,
:cbange-of-size-or-margins, and :refresh. You need daemons
like these for most window-system applications.

;;; Calculates size and position of figure after initialization.
(defmethod (basic-arrow-window-mixin :after :init) (ignore)

(send self ':compute-parameters»

;;; Calculates size and position of figure after window change.
(defmethod (basic-arrow-window-mixin

:after :change-of-size-or-margins) (&rest ignore)
(send self ':compute-parameters»

;;; Draws the figure when necessary after window is refreshed.
(defmethod (basic-arrow-window-mixin :after :refresh)

(&optional type)
;; Draw figure if not restored from a bit-save array
(when (or (not tv:restored-bits-p)

;; ... or size has changed.
(eq type ':size-changed»

;; If restored from a bit-save array, clear screen first
(when tv:restored-bits-p

(send self ':clear-screen»
;; Bind *DEST* to self
(let «*dest* self»

;; Draw the figure
(draw-arrow-graphic top-edge right-x top-y»»

February 1985

121

Program Development Tools and Techniques

We can now define a flavor of window, basic-arrow-window, built
on our two mixin flavors and on tv:window. The order of
combination of flavors is important. We need to include
basic-arrow-window-mixin before arrow-parameter-mixin so
that the :compute-top-y method for basic-arrow-window-mixin
shadows that for arrow-parameter-mixin. We must also put
basic-arrow-window-mixin before tv:window so that our :after
daemons will run after any that tv:window or its components
might provide.

(defflavor basic-arrow-window ()
(basic-arrow-window-mixin
arrow-parameter-mixin
tv:window)

(:documentation :combination
"Instantiable flavor providing a basic window for output.

Though this flavor is instantiable, its methods assume that
point coordinates use the window coordinate system, with
origin at top left. To work with the current calculation
module it needs another mixin to convert LGP to screen
coordinates. In the component flavors, BASIC-ARROW-WINDOW-HIXIN
must come before ARROW-PARAHETER-HIXIN and TV:WINDOW for
shadowing and daemons to work correctly."»

We can actually make an instance of this flavor. We define no new
methods for it, leaving all methods to component flavors. If we had
a calculation module that used screen coordinates,
basic-arrow-window would be the right flavor to use for screen
output.

5.1.3 Converting Lgp to Screen Coordinates
Because our calculation module uses LGP coordinates, we need
another flavor of window to produce output. We define a flavor,
19p-window-mixin, to be mixed in with basic-arrow-window.
We need a new instance variable, scale-factor, whose value is the
ratio of LGP to screen pixel densities.

122

Program Development Utilities February 1985

(defflavor 19p-window-mixin
«scale-factor 2.5»
()

(:required-flavors basic-arrow-window)
(:documentation :mixin
"Converts LGP to screen coordinates and vice versa.

When mixed in with BASIC-ARROW-WINDOW, this flavor allows
window output with a calculation module that uses LGP
coordinates. The instance variable SCALE-FACTOR is the
ratio of LGP to screen pixel density. The methods take
the height and width of the window in screen pixels and
calculate the length of the top edge and the coordinates
of the top right point of the figure in LGP pixels. In
drawing lines on the window, the methods convert LGP to
window coordinates. These methods shadow those in
ARROW-PARAMETER-MIXIN and BASIC-ARROW-WINDOW-MIXIN."»

We next define new primary methods to incorporate the scale factor
into the calculation of top-edge, right-x, and top-yo These
methods shadow those defined for arrow-parameter-mmn and
basic-arrow-window-mixin.

; ; ;

; ; ;

; ; ;

; ; ;

; ; ;

Calculates top edge in LGP pixels from screen proportions.
Multiplies length of smaller dimension, in screen pixels, by
proportion of this dimension to be filled by the figure.
Multiplies this by 0.8 to find top edge in screen pixels.
Corrects for higher density of LGP pixels. This method
shadows that of ARROW-PARAMETER-MIXIN.

(defmethod (lgp-window-mixin :compute-top-edge) ()
(setq top-edge

(fixr (* scale-factor 0.8 *fill-proportion*
(min width height»»)

, •• Calculates x-coord of top right point in LGP pixels.
;;; Finds horizontal length of figure in screen pixels by
;;; dividing top edge by 0.8. Centers figure horizontally
•• , in window. correcting for higher density of LGP pixels.
;;; This method shadows that of ARROW-PARAMETER-MIXIN.
(defmethod (lgp-window-mixin :compute-right-x) ()

(setq right-x
(fixr (* 0.5 (+ (* width scale-factor)

(II top-edge 0.8»»»

February 1985

123

Program Development Tools and Techniques

;;; Calculates y-coord of top right point in LGP pixels.
;;; Finds vertical length of figure in screen pixels by
;;; dividing top edge by 0.8. Centers figure vertically
;;; in window, correcting for higher density of LGP pixels.
;;; This method shadows those of ARROW-PARAHETER-HIXIN and
;;; BASIC-ARROW-WINDOW-HIXIN.
(defmethod (lgp-window-mixin :compute-top-y) ()

(setq top-y
(fixr (* 0.5 (+ (* height scale-factor)

(II top-edge 0.8»»»

Finally, we need to modify the coordinates used in the :show-lines
method to take account of the scale factor and the difference in
origins for LGP and screen coordinates. We define new methods
for :compute-x and :compute-y to shadow the methods we
defined for basic-arrow-window-mixin.

;;; Converts x-coord of line endpoint from LGP to screen pixels.
;;; Corrects for higher density of LGP pixels. This method shadows
;;; that of BASIC-ARROW-WINDOW-HIXIN.
(defmethod (lgp-window-mixin :compute-x) (x)

(fixr (II x scale-factor»)

;;; Converts y-coord of line endpoint from LGP to screen pixels.
;;; Corrects for higher density of LGP pixels and for screen origin
;;; at top left. This method shadows that of BASIC-ARROW-WINDOW-HIXIN.
(defmethod (lgp-window-mixin :compute-y) (y)

(fixr (- height (II y scale-factor»»

We can now define the flavor we will actually instantiate with
tv:make-window. This flavor, arrow-window, is just a
combination of 19p-window-mixin and basic-arrow-window.

(defflavor arrow-window ()
(lgp-window-mixin basic-arrow-window)

(:documentation :combination
"Instantiable flavor for window output from LGP coordinates.

This flavor has all the features of BASIC-ARROW-WINDOW but
assumes that the calculation module uses LGP coordinates. This
is the flavor to instantiate for window output using the
current calculation module."»

124

Program Development Utilities February 1985

5.1.4 Flavors for Lgp Output
We want to be able to direct output to an LGP or an LGP record
file as well as to a window. We define another flavor,
Igp-pixel-mixin, to be mixed in with arrow-parameter-mixin.
We can set an instance variable to the output stream and make it
initable so that we can specify the output stream when we make
an instance of the flavor we build on Igp-pixel-mixin. The output
stream will itself be an instance of a flavor.

(defflavor 19p-pixel-mixin
(output-stream)
()

:initable-instance-variables
(:required-flavors arrow-parameter-mixin)
(:documentation :mixin
"Provides methods for arrow graphic output on an LGP stream.

ARROW-PARAHETER-HIXIN is required to calculate the size of the
figure and position it in the center of the page. The method
assumes that coordinates are in LGP pixels. This flavor
should be mixed, along with ARROW-PARAHETER-HIXIN, into an
instantiable flavor for LGP output. When that flavor is
instantiated, the instance variable output-stream should be
initialized."»

The methods for this flavor need to do two things: determine the
width and height of a page and handle :show-Iines messages. We
get the width and height from the values of instance variables for
the flavor 19p:basic-Igp-stream. This flavor will be a component
of the flavor we instantiate as the output stream.

;;; Finds width and height of a page for LGP output.
;;; This flavor is required by ARROW-PARAHETER-HIXIN. Finds the
'" values of two instance variables of LGP:BASIC-LGP-STREAH:
;;; SI:PAGE-WIDTH and SI:PAGE-HEIGHT. Assumes that
;;; lGP:BASIC-LGP-STREAH is included in output stream to provide
;;; these instance variables.
(defmethod (lgp-pixel-mixin :compute-width-and-height) ()

(setq width (symeval-in-instance output-stream 'si:page-width)
height (symeval-in-instance output-stream 'si:page-height»)

The :show-Iines method is similar to that for windows. Instead of
using the :draw-Iine message to produce lines, we use two
messages to Igp:basic-Igp-stream: :send-command and
:send-coordinates.

February 1985

125

Program Development Tools and Techniques

; ; ;

; ; ;

; ; ;

; ; ;

; ; ;

; ; ;

Receives endpoint coordinates and draws lines on LGP stream.
Arguments are alternating x- and y-coordinates of endpoints of
lines to be drawn. If there are more than two pairs of
~oordinates, assumes that the endpoint of one line is the
starting point of the next. Draws a line by sending output
stream :SEND-COMMAND messages for LGP commands and
:SEND-COORDINATE messages for LGP coordinates. Assumes that
flavor LGP:BASIC-LGP-STREAM is included in output stream to

;;; provide these methods.
(defmethod (lgp-pixel-mixin :show-lines)

(xO yO &rest x-y-pairs)
;; Send command and coordinates to start drawing lines
(send self ':send-command-and-coordinates HIm xO yO)
;; "Cddr" down the 1 ist created by making all but the first
;; pair of coordinates an &rest argument
(loop for (x y) on x-y-pairs by #'cddr

;; ;

;; Send command and coordinates to draw a line
do (send self ':send-command-and-coordinates H/v x y»)

Sends line-drawing commands to LGP output stream.
:SEND-COMMAND transmits an LGP command. :SEND-COORDINATES

;;; transmits coordinates of an endpoint of a line to be drawn.
'" Assumes that LGP:BASIC-LGP-STREAH is included in output stream
;;; to provide these methods.
(defmethod (lgp-pixel-mixin :send-command-and-coordinates) (cmd x y)

(send output-stream ':send-command cmd)
(send output-stream ':send-coordinates (fixr x) (fixr y»)

We can now define an instantiable flavor for the LGP stream that
combines 19p-pixel-mixin and arrow-parameter-mixin.

(defflavor 19p-pixel-stream ()
(lgp-pixel-mixin arrow-parameter-mixin)

(:documentation :combination
"Instantiable flavor for arrow output on LGP stream.

Assumes that the calculation module uses LGP coordinates.
When this flavor is instantiated, the LGP-PIXEL-MIXIN
instance variable OUTPUT-STREAH should be initialized.
The output stream can be directed to an LGP or a file,
but it must include flavor LGP:BASIC-LGP-STREAH for
output to work correctly."»

126

Program Development Utilities February 1985

5.1.5 The Top-level Function
We are ready to define a top-level function we can call to produce
the graphic. We start by popping up a choose-variable-values
window. We allow the user to specify screen, LGP, or file output.
We also allow the user to choose values for the number of recursion
levels and the proportion of the page or window to be filled. We let
the user decide whether or not to stripe the arrows.

(defvar *dest-string* "Screen"
"Destination of program output [Screen, LGP, or File]")

(defvar *output-file* nil
"Pathname for LGP-record-file output")

;;; Top-level function to call to produce arrow graphic.
", Pops up a choose-variable-values window to let user specify
;;; output destination, number of recursion levels, proportion
;;; of smaller dimension of page or window to be filled, and
;;; whether or not to stripe figure.
(defun do-arrow ()

;; Pop up a choose-variable-values window
(tv:choose-variable-values

'((*do-the-stripes* "Stripe the arrows?" :boo1ean)
(*max-depth* "Number of recursion levels" :number)
(*fill-proportion*

"Fraction of page or window to be filled" :number)
(*dest-string* "Output destination"

:choose ("Screen" "LGP" "File"»
(*output-file* "Pathname for file output" :PATHNAHE»

;; Hake window wide enough to accommodate long pathnames
;; and error messages
':extra-width 20.
;; Give user a chance to abort
':margin-choices '("Do It" ("Abort" (signal 'sys:abort»)
':labe1 "Choose Options for Graphic"»

Next we need to take action depending on the output destination
the user has chosen. If the variable *fill-proportion* is zero, we
just return nil no matter what the output destination. If the
destination is "Screen", we make an instance of arrow-window.
We use tv:make-window, which creates a new window each time.
we call do-arrow. We could also have defined a resource of arrow
windows (using defwindow-resource), but we might want more
than one selectable arrow window at a time.

If we have more than one arrow window, we want each to retain

February 1985

127

Program Development Tools and Techniques

its own values for number of recursion levels, proportion of the
window to be filled, and presence or absence of striping. We define
three instance variables for basic-arrow-window-mixin and make
them initable. We initialize them when we call tv:make-window
from do-arrow. We change the :after daemons for
basic-arrow-window-mixin to bind the special variables to the
instance-variable values.

(defflavor basic-arrow-window-mixin
(do-stripes max-dep fill-prop)
()

:initable-instance-variables
(:required-flavors arrow-parameter-mixin tv:window)
(:default-init-plist

:edges-from ':mouse :minimum-width 200 :minimum-height 200
:blinker-p nil :expose-p t)

(:documentation :mixin ... »

(defmethod (basic-arrow-window-mixin :after :init) (ignore)
(let «*fill-proportion* fill-prop»

(send self ':compute-parameters»)

(defmethod (basic-arrow-window-mixin
:after :change-of-size-or-margins) (&rest ignore)

(let «*fill-proportion* fill-prop»
(send self ':compute-parameters»)

(defmethod (basic-arrow-window-mixin :after :refresh)
(&optional type)

;; Draw figure if not restored from a bit-save array
(when (or (not tv:restored-bits-p)

;; ... or size has changed.
(eq type ':size-changed»

;; If restored from a bit-save array, clear screen first
(when tv:restored-bits-p

(send self ':clear-screen»
;; Bind global variables to self and instance variables
(let «*dest* self)

(*do-the-stripes* do-stripes)
(*max-depth* max-dep»

;; Draw the figure
(draw-arrow-graphic top-edge right-x top-y»»

128

Program Development Utilities February 1985

(defun do-arrow ()
(tv:choose-variable-values

;; If figure is infinitely small, just return nil
(cond ((= *fill-proportion* 0) nil)

;; If screen output, make a window
((equal *dest-string* "screen")
(tv:make-window 'arrow-window

;; Initialize instance variables to
;; values set by the user
':do-stripes *do-the-stripes*
':max-dep *max-depth*
':fill-prop *fill-proportion*»»

If the output destination is "LGP" or "File", we want to make an
instance of Igp-pixel-stream with the instance variable stream
initialized to an appropriate stream. We construct this stream by
calling si:make-hardcopy-stream with an argument that depends
on the output destination. We use with-open-stream to produce
the output on the stream and close it when we finish.

February 1985

129

Program Development Tools and Techniques

(defun do-arrow ()
(tv:choose-variable-values

(cond «= *fill-proportion* 0) nil)
;; If screen output, make a window
«equal *dest-string* "screen")
(tv:make-window 'arrow-window

;; Initialize instance variables to
;j values set by the user
':do-stripes *do-the-stripes*
':max-dep *max-depth*
':fill-prop *fill-proportion*»

;; If LGP or file output, use an appropriate stream
(t (with-open-stream

(stream
;; This function returns a stream suitable for
;; LGP output
(si:make-hardcopy-stream

;; Argument is the output device. For LGP,
;; use the default hardcopy device.
(if (equal *dest-string* "lgp")

si:*default-hardcopy-device*
" For file output, use the correct format
;; for the hardcopy device and direct
;; output to the file specified by the user
(lgp:get-lgp-record-file-hardcopy-device

output-file»»
;; Hake an instance of our LGP output flavor
(1 et « *dest*

(make-instance 'lgp-pixel-stream
;; Initialize instance
j; variable to output stream
':output-stream stream»)

;; Position the figure on the page
(send *dest* ':compute-parameters)
;; Draw the figure, using instance-variable values
;; as arguments
(draw-arrow-graphic (send *dest* ':top-edge)

(send *dest* ':right-x)
(send *dest* ':top-y»»»)

5.1.6 The Arrow Window: Interaction, Processes, and the Mouse
Suppose we want to let the user modify the characteristics of the
graphic for each window. The user might want to change the
presence or absence of striping, the number of recursion levels, or
the proportion of the window to be filled.

130

Program Development Utilities February 1985

One way to install this option is to associate each window with its
own process and let the process run in a loop. If the user clicks
right on the window, we pop up a choose-variable-values window.
When the user is finished, we refresh the window and wait for the
next mouse click.

We can associate a window with a process by including the flavor
tv:process-mixin in basic-arrow-window. When we make the
window (using tv:make-window), we specify a :process init option
whose argument is the name of the top-level function for the
process. When the window is created, a new process is created as
well. When the window is exposed, the process's top-level function
is called with one argument, the window.

(defflavor basic-arrow-window ()
(basic-arrow-window-mixin
arrow-parameter-mixin
tv:process-mixin
tv:window)

(:documentation :combination ... »

(defun do-arrow ()
(tv:choose-variable-values

(cond «= *fill-proportion* 0) nil)
;; If screen output, make a window
«equal *dest-string* "screen")
(tv:make-window 'arrow-window

;; Initialize instance variables to
;; values set by the user
':do-stripes *do-the-stripes*
':max-dep *max-depth*
':fill-prop *fill-proportion*
;; Specify top-level function for the
;; process associated with the window
':process '(window-loop»)

We next want to be able to handle mouse clicks. We include the
flavors tv:any-tyi-mixin and tv:list-mouse-buttons-mixin in
basic-arrow-window. When a window is waiting for input and
the mouse is clicked while over the window, a blip enters the
window's input buffer. A blip is a list whose form, with
tv:list-mouse-buttons-mixin, is as follows:

February 1985

131

Program Development Tools and Techniques

(:mouse-button encoded-click window x y)

Encoded-click is a flXllum that represents the button clicked.

(defflavor basic-arrow-window ()
(basic-arrow-window-mixin
arrow-parameter-mixin
tv:any-tyi-mixin
tV:list-mouse-buttons-mixin
tv:process-mixin
tv:window)

(:documentation :combination ...)

We also want a mouse documentation string to appear when the
mouse is over the window:

(defmethod (basic-arrow-window-mixin
:who-line-documentation-string) ()

"Provides a mouse documentation line for the window.
The only option is to click right and pop up a
choose-variable-values window of options for changing
the graphic on this window."

"R: Choose-variable-values options for changing figure on this window")

We can now write the process function window-loop. This
function just sends a :main-Ioop message to the window. We
define :main-Ioop as a method of basic-arrow-window-mixin.
The method consists of an error-restart-Ioop so that we can
return to top level if sys:abort or an error is signalled. We send
the window an :any-tyi message. If the user clicks right, we pop
up a choose-variable-values window with the window's current value
of the variables. When the user exits, we refresh the window and
wait for another click. If the user aborts, sys:abort is signalled,
and we restart the loop.

Top-level function for process associated with arrow window.
The function is called when the window is created. Argument is
the window. The function sends the window a :HAIN-LOOP message.
This method should be the actual command loop for the process.

(defun window-loop (window)
(send window ':main-loop»

132

Program Development Utilities February 1985

'" Command loop for window associated with a separate process.
". Consists of an error-restart-loop that handles restarts from errors
'" and sys:abort. Waits for mouse input. If a right click, pops up a
;;; choose-variable-values window to change characteristics of the
;;; figure. On exit, sets instance variables to the new values and
;;; refreshes the window. then waits for another mouse click. Assumes
'" blips are lists of the form provided by TV:LIST-HOUSE-BUTTONS-HIXIN.
(defmethod (basic-arrow-window-mixin :main-loop) ()

;; Run forever in a loop. Offer a restart handler if an error
;; or SYS:ABORT is signalled.
(error-restart-loop «error sys:abort) "Arrow Window Top Level")

;; Wait for input
(let «char (send self ':any-tyi»)

;; Pop up window if input is a list
(when (and (listp char)

;; ... and a mouse click
(eq (first char) ':mouse-button)
;; ... and a single click on the right button.
(eq (second char) #\mouse-r-l»

;; Bind global variables to instance-variable values
(let «*do-the-stripes* do-stripes)

(*max-depth* max-dep)
(*fill-proportion* fill-prop»

" Pop up a choose-variable-values window
(tv:choose-variable-values

'((*do-the-stripes* "Stripe the arrows?" :boolean)
(*maxc-depth* "Number of recursion levels" :number)
(*fill-proportion*

"Fraction of window to be filled" :number»
;; Hake the window wide to provide enough room for error
;; messages.
':extra-width 20
;; Give the user a chance to abort
':margin-choices '("00 It" (~Abort" (signal 'sys:abort»)
':label "Choose Options For Graphic")

;; Set instance variables to the new values
(setq do-stripes *do-the-stripes*

max-dep *max-depth*
fill-prop *fill-proportion*)

" Recompute size and position of the figure
(send self ':compute-parameters)
;; Send :REFRESH message with argument of ':new-vals to make
;; sure the figure is redrawn if there is a bit-save array
(send self ':refresh ':new-vals»»»

We need to change the :after :refresh method of
basic-arrow-window-mixin so that it redraws the figure when
the values are changed even if the window has a bit-save array.

February 1985

133

Program Development Tools and Techniques

(defmethod (basic-arrow-window-mixin :after :refresh)
(&optional type)

;; Draw figure if not restored from a bit-save array
(when (or (not tv:restored-bits-p)

;; ... or size has changed ...
(eq type ':size-changed)
;; ..• or new values for figure parameters.
(eq type ':new-vals»

;; If restored from a bit-save array, clear screen first
(when tv:restored-bits-p

(send self ':clear-screen»
;; Bind global variables to self and instance variables
(let «*dest* self)

(*do-the-stripes* do-stripes)
(*max-depth* max-dep»

" Draw the figure
(draw-arrow-graphic top-edge right-x top-y»»

Note that we can also manipulate the windows we create by using
the [Split Screen] and [Edit Screen] options from the System menu.
We might have more than one arrow window on the screen at the
same time. We might redisplay the figures on these windows at
the same time. In this case, the scheduler might switch between
the arrow window processes, allowing each to run for a time until
all redisplays are complete.

Remember that we took care to bind rather than set the global
variables in the calculation module that hold the state of each
arrow. We want the values of some variables to be different in
each window. Each process maintains its own bindings for
variables. When the scheduler switches processes, bindings in the
old process are undone and saved. They are restored when the old
process resumes. But if we had set the variables, the program
would not have run correctly when the scheduler switched
processes. The new process might have used variable values set in
the old process.

5.1.7 Signalling Conditions
We want to add one more refinement to the output module. In
our choose-variable-values windows, the variable type keywords, such
as :number and :pathname, provide for some error checking when
users choose new values. But two of our numeric variables have
further restrictions: *max-depth* must be a nonnegative integer,
and *fill-proportion* must be a fraction between 0 and 1.

134

Program Development Utilities February 1985

The function tv:choose-variable-values has a :function option
that lets us name a function to be called whenever an item is to be
changed. We can use this function to check the values of our two
variables and signal a condition if the values are bad. We then
print a message on the window and ask the user to proceed by
supplying a new value.

We start by defining flavors for the conditions we signal. We define
a general class of error conditions called bad-arrow-variable. We
then define two flavors built on bad-arrow-variable:
bad-arrow-depth for improper values of *max-depth* and
bad-arrow-fill-proportion for improper values of
fill-proportion. For each of these instantiable flavors we define
a :report method and a :proceed method. The :report method
prints a string identifying the condition. The :proceed method
allows the user to proceed from the condition, in this case by
supplying a new value. We could have more than one :proceed
method if we had other ways of proceeding. :proceed methods are
combined using :case method combination.

If we want to create conditions for bad values of other variables in
the future, we can simply define new flavors built on
bad-arrow-variable.

(defflavor bad-arrow-variable () (error)
(:documentation
"Noninstantiable class of bad-variable conditions.

The user might set some variables to impermissible values.
These conditions are to permit checking for bad values
beyond the system's error checking. Instantiable condition
flavors for specific variables should be built on this
flavor."))

(defflavor bad-arrow-depth () (bad-arrow-variable)
(:documentation
"Proceedable condition: bad value for *MAX-DEPTH*.

An instantiable condition flavor for impermissible values
of *MAX-DEPTH*, the number of recursion levels in the
figure." »

;;; Prints string on stream to report bad *MAX-DEPTH* value
(defmethod (bad-arrow-depth :report) (stream)

(format stream "No. of levels was not a -
nonnegative fixnum."»

February 1985

135

Program Development Tools and Techniques

;;; Proceed type method for supplying new value of *MAX-DEPTH*
(defmethod (bad-arrow-depth :case :proceed :new-depth)

(&optional (dep (prompt-and-read
':number
"Supply new value for -

no. of recursion levels: H»~)
"Supply a new value for number of recursion levels."
(values ':new-depth dep»

(deff1avor bad-arrow-fil1-proportion () (bad-arrow-variable)
(:documentation
"Proceedable condition: bad value for *FILL-PROPORTION*.

An instantiable condition flavor for impermissible values of
FILL-PROPORTION, the fraction of the smaller dimension of
the page or window that the figure is to fill."»

;;; Prints string on stream to report bad *FILL-PROPORTION* value
(defmethod (bad-arrow-fi1l-proportion :report) (stream)

(format stream "Proportion was not a fraction between -
o and 1."»

", Proceed type method for new value of *FILL-PROPORTION*
(defmethod (bad-arrow-fi11-proportion :case :proceed

:new-proportion)
(&optional (prop (prompt-and-read

':number
"Supply new fraction of bounds -

be filled: "»)
"Supply a new fraction of page or window to be filled."
(values ':new-proportion prop»

Next we write the function, check-item, to be called when a
variable value is changed. The function is called with four
arguments: the choose-variable-values window, the variable, and
the variable's old and new values. We use condition-bind to bind
a handler for our two conditions. This handler will be called if we
signal the conditions from within the condition-bind. If we do
find a bad variable value, we we expect the call to signal to return
the two values from the :proceed method: the proceed type and
the new variable value. We then check the new value and, if it is
good, set the variable to the new value. Finally, we refresh the
window and return t.

136

Program Development Utilities February 1985

; ; ;

; ; ;

; ; ;

Called when a value changes in choose-variable-values window.
Arguments are the window, the variable, and its old and new values.
Binds handlers for conditions for impermissible values. If new
value is OK, sets variable to the new value, refreshes window, and
returns t. If value is not OK, signals the appropriate condition.
When SIGNAL returns, presumably with a new variable value, checks
the new value in the same way it checks a new value that comes
from the window.

(defun check-item (cvv-window var old-val new-val)
,. We don't use the old value. To avoid a compiler complaint,
" just evaluate it and ignore it. We could also use IGNORE
;; instead of OLD-VAL in the arglist, but then the arglist
;; would be less meaningful.
old-val
;; Bind handlers for the conditions we might signal
(condition-bind «bad-arrow-depth 'bad-arrow-var-handler)

(bad-arrow-fi1l-proportion
'bad-arrow-var-hand1er»

(when (eq var '*max-depth*)
;; *MAX-DEPTH* must be nonnegative fixnum
(loop until (and (fixp new-val) (~ new-val 0»

;; If it's not, bind QUERV-IO to the window and
" signal a condition. SIGNAL should return
;; two values, the proceed type and the new
;; value from the proceed method. Ignore the
" proceed type and set NEW-VAL to the new
" value.
do (let «query-io cvv-window»

(multiple-value (nil new-val)
(signal 'bad-arrow-depth»»)

(when (eq var '*fil1-proportion*)
;; *FILL-PROPORTION* must be between 0 and 1
(loop until (and (~ new-val 0) (~ new-val 1»

" If it's not, bind QUERV-IO to the window and
" signal a condition. SIGNAL should return
" two values, the proceed type and the new
" value from the proceed method. Ignore the
" proceed type and set NEW-VAL to the new
" value.
do (let «query-io cvv-window»

(multiple-value (nil new-val)
(signal 'bad-arrow-fi11-proportion»»)

;; Variable value is now OK. Set variable to the new value.
;; Note that we DO want to evaluate VAR.
(set var new-val)
;; Refresh the window
(send cvv-window ':refresh)
;; Return t

February 1985

137

Program Development Tools and Techniques

t»

Next we need to add the :function option to our calls to
tv:choose-variable-values in the function do-arrows and the
:main-Ioop method of basic-arrow-window-mixin:

(defun do-arrow ()
;; Pop up a choose-variable-values window
(tv:choose-variable-values

'«*do-the-stripes* "Stripe the arrows?" :boolean)
(*max-depth* "Number of recursion levels" :number)
(*fill-proportion*

"Fraction of page or window to be filled" :number)
(*dest-string* "Output destination"

:choose ("Screen" "LGP" "File"»
(*output-file* "Pathname for file output" :pathname»

;; Hake window wide enough to accommodate long pathnames
;; and error messages
':extra-width 20.
;; Call this function when a value is changed
':function 'check-item
;; Give user a chance to abort
':margin-choices '("00 It" ("Abort" (signal 'sys:abort»)
':label "Choose Options for Graphic")

138

Program Development Utilities February 1985

(defmethod (basic-arrow-window-mixin :main-loop) ()
;; Run forever in a loop. Offer a restart handler if an error
;; or sys:abort is signalled.
(error-restart-loop «error sys:abort) "Arrow Window Top Level")

;; Wait for input
(l et « char (send self ': any-tyi »)

;; Pop up window if input is a list
(when (and (listp char)

;; ... and a mouse click
(eq (first char) ':mouse-button)
;; ... and a single click on the right button.
(eq (second char) #\mouse-r-l»

;; Bind global variables to instance-variable values
(let «*do-the-stripes* do-stripes)

(*max-depth* max-dep)
(*fill-proportion* fill-prop»

" Pop up a choose-variable-values window
(tv:choose-variable-values

'«*do-the-stripes* "Stripe the arrows?" :boolean)
(*max-depth* "Number of recursion levels" :number)
(*fill-proportion*

"Fraction of window to be filled" :number»
;; Hake the window wide to provide enough room for error
;; messages.
':extra-width 20
;; Call a function to check for errors when values change
':function 'check-item
;; Give the user a chance to abort
':margin-choices '("Do It" ("Abort" (signal 'sys:abort»)
':label "Choose Options for Graphic")

;; Set instance variables to the new values
(setq do-stripes *do-the-stripes*

max-dep *max-depth*
fill-prop *fill-proportion*)

" Recompute size and position of the figure
(send self ':compute-parameters)
;; Send :REFRESH message with argument of ':new-vals to make
;; sure the figure is redrawn if there is a bit-save array
(send self ':refresh ':new-vals»»»

Finally, we need to write a handler for the two conditions. When a
condition is signalled, the handler is called with one argument, the
object of the flavor of condition that is signalled. In check-item,
we call signal with query-io bound to the choose-variable-values
window. The handler checks to be sure there is a proceed type for
the object. If so, the handler turns on a blinker on the window
and sends the :report and :proceed messages to the condition

February 1985

139

Program Development Tools and Techniques

object. Finally, it turns off the blinker and passes back to its caller
the two values that the :proceed method returns.

Actually, the handler we define doesn't depend on the binding of
query-io to the window. If query-io is not bound to a window -
that is, to an instance of a flavor built on tv:sheet - the handler
won't try to turn on a blinker. If query-io is bound to a window,
the handler first looks (using tv:sheet-following-blinker) for an
existing blinker that follows the cursor. If it doesn't find one, it
makes a new blinker (using tv:make-blinker). It encloses the
handling operation in an unwind-protect to be sure that the
blinker is turned off in case of a nonlocal exit.

140

Program Development Utilities February 1985

;;; Handler for bad value of *MAX-DEPTH* or *FILL-PROPORTION*.
", Argument is the condition object created by SIGNAL. Uses QUERV-IO
", stream to report condition. Sends the condition object a :PROCEED
", message and passes back the values it returns.
(defun bad-arrow-var-handler (cond-obj &aux bl)

;; Find out whether this object has the right proceed type.
;; If not, return nil.
(if (send cond-obj ':proceed-type-p

(cond «typep cond-obj 'bad-arrow-depth) ':new-depth)
«typep cond-obj 'bad-arrow-fill-proportion)
':new-proportion»)

;; Enclose the handling operation in an UNWIND-PROTECT so that
;; if we use a blinker we are sure to turn it off
(unwind-protect

(progn
;; Use a blinker if the QUERY-IO stream is a window
(setq bl (if (typep query-io 'tv:sheet)

;; If a cursor-following blinker exists, use it
(or (tv:sheet-following-blinker query-io)

;; Otherwise, make a new blinker
(tv:make-blinker query-io

'tv:rectangular-blinker
':follow-p t»»

;; If a blinker, make it blink
(if bl (send bl ':set-visibility ':blink»
;; Alert the user
(tv:beep)
;; Send a report, presumably describing the condition
(send cond-obj ':report query-io)
;; Send object a :PROCEED message and return the values
;; that the method returns
(send cond-obj ':proceed

(cond «typep cond-obj 'bad-arrow-depth) ':new-depth)
«typep cond-obj 'bad-arrow-fill-proportion)

':new-proportion»»
" If a blinker, turn it off
(if bl (send bl ':set-visibility nil»»)

After we have defined all the flavors and methods for the output
module, we insert a compile-flavor-methods form in the file.
Without this macro, combined methods are compiled and flavor data
structures generated when we make the first instance of a flavor -
that is, at run time. compile-flavor-methods speeds run-time
operation by causing combined methods to be compiled at compile
time and data structures to be generated at load time. It is useful
only for flavors that will be instantiated, not for flavors that are
only components of instantiated flavors.

February 1985

141

Program Development Tools and Techniques

(compile-flavor-methods arrow-window 19p-pixel-stream
bad-arrow-depth bad-arrow-fill-proportion)

5.2 Programming Aids for Flavors and Windows

Some editor commands and Lisp functions provide information about flavors. You
can find out about component flavors, methods, instance variables, init keywords,
and documentation. Using the Inspector, you can examine instance variables and
methods for instances of flavors: See the section "The Inspector: Program
Development Tools and Techniques", page 104. If a flavor has gettable instance
variables, you can obtain their values by sending messages to instances of the flavor.

These commands and functions are useful for finding information about windows as
well. Because windows are instances of flavors, you can retrieve characteristics that
are stored in gettable instance variables by sending messages to the windows. See
the section "Using the Window System" in Programming the User Interface. If a
window is exposed, you can examine and alter some characteristics by clicking on the
[Attributes] item in the System menu. Clicking on [Attributes] pops up a choose­
variable-values window for such characteristics as font, label, margins, and vertical
spacing between lines.

As with other definitions, Edit Definition (M-.) prepares to edit definitions of flavors
and methods. For a description of how to use this command to edit method
definitions: See the section "Methods: Program Development Tools and Techniques",
page 142.

5.2.1 General Information on Flavors
The facilities that display general information about a flavor are
Describe Flavor (M-X) and describe-flavor. These display
somewhat different descriptions of a flavor.

A useful predicate for instances of flavors is typep. Given an
instance and a flavor name, typep returns t if the instance
includes the flavor as a component.

Example
In handling bad values for the variables *max-depth* and
fill-proportion, we want to be sure that query-io is bound to a
window before turning on a blinker. We find out whether the
object bound to query-io is built on tv:sheet by using typep:

(typep query-io 'tv:sheet)

142

Program Development Utilities February 1985

5.2.2 Methods

Reference
Describe Flavor (M-X)

(describe-flavor flavor-name)

(typep arg ~)

Displays a description of a flavor
that includes the names of
instance variables and component
flavors and any documentation
added by the :documentation
option for deffiavor. Also
displays init keywords and
inherited methods and instance
variables. Names of flavors and
methods in the display are mouse
sensitive.

Prints a description of a flavor
that includes the names of
instance variables and component
flavors and any documentation
added by the :documentation
option for deffiavor.

When arg is an instance of a
flavor and type is a flavor name,
returns t if the instance includes
the flavor as a component or nil
if it does not. If type is omitted,
returns a symbol representing the
flavor of the instance.

Four Zmacs commands display information about the methods that
handle messages to instances of flavors. For instances of flavors
built on si:vanilla-flavor - that is, for nearly all flavors - you
can send messages to find out which messages the object handles
and whether or not it handles a specific message.

You can use the Zmacs command Edit Definition (1""1-.) to edit the
definition of a method. Specify a method by typing a
representation of its function spec. This is a list of the following
form:

(:method flavor type message)

When typing this representation for Edit Definition (M-.), type is
optional. If the method has a type, Zmacs will try to find the
definition and ask you whether or not that definition is the one
you want.

February 1985

143

Program Development Tools and Techniques

You might know the name of a method but not the name of its
flavor. Use List Methods (M-X) to find methods for all flavors that
handle a message. You can click on one of the method names
displayed to edit its definition.

Example
We want to edit the definition of the :main-Ioop method of
basic-arrow-window-mixin. We use Edit Definition (M-.) and
type:

(:method basic-arrow-window-mixin :main-loop)

Example
We want to find out which methods handle :show-lines messages
and how the methods handle the messages. List Methods (M-X)

displays the following methods:

Hethods for :SHOW-LINES
(:HETHOD BASIC-ARROW-WINDOW-HIXIN :SHOW-LINES)
(:HETHOD LGP-PIXEL-HIXIN :SHOW-LINES)

We can click on one of the method names or press C-. to edit the
definition. We also could have found the source code directly by
using Edit Methods (M-X).

Example
We want to find out which methods are called when the system
sends an :init message to arrow-window. List Combined
Methods (M-X) prompts for message and flavor names and displays
the following methods, in the order in which they are called:

Combined method for :INIT message to ARROW-WINDOW flavor
(:HETHOD TV:SHEET :WRAPPER :INIT)
(:HETHOD TV:STREAH-HIXIN :BEFORE :INIT)
(:HETHOD TV:BORDERS-HIXIN :BEFORE :INIT)
(:HETHOD TV:ESSENTIAL-LABEL-HIXIN :BEFORE :INIT)
(:HETHOD TV:ESSENTIAL-WINDOW :BEFORE :INIT)
(:HETHOD TV:SHEET :INIT)
(:HETHOD TV:ESSENTIAL-SET-EDGES :AFTER :INIT)
(:HETHOD TV:LABEL-HIXIN :AFTER :INIT)
(:HETHOD TV:PROCESS-HIXIN :AFTER :INIT)
(:HETHOD BASIC-ARROW-WINDOW-HIXIN :AFTER :INIT)

144

Program Development Utilities February 1985

Reference
List Methods (M-X)

Edit Methods (M-X)

List Combined Methods (M-X)

Edit Combined Methods (M-X)

Lists methods for all flavors that
handle a specified message. Press
c-. to edit the definitions of the
methods listed.

Prepares to edit definitions of
methods for all flavors that
handle a specified message. Press
c-. to edit subsequent definitions.

Lists all the methods that would
be called if a specified message
were sent to an instance of a
specified flavor. Press c-. to edit
the definitions of the methods
listed.

Prepares to edit definitions of
methods that would be called if a
specified message were sent to an
instance of a specified flavor.
Press c-. to edit subsequent
definitions.

(send inst(z,nce ':which-operations)
Returns a list of messages that
instance can handle.

(send instance ':operation-handIed-p message)
Returns t if instance has a
handler for message or nil if it
does not.

(get-handIer-for object message) Returns the method that handles
message to object, or nil if object
has no handler for message.

5.2.3 Init Keywords
si::flavor-allowed-init-keywords retrieves the in it keywords
allowed for a flavor.

Example
We want to find the allowed init keywords for 19p-pixel-stream.
si:flavor-allowed-init-keywords returns the following list:

(:DO-STRIPES :FILL-PROP :MAX-DEP :OUTPUT-STREAM)

February 1985

145

Program Development Tools and Techniques

These are all keywords for initable instance variables, the first three
from arrow-parameter-mixi.n and the last from 19p-pixel-mixi.n.

Reference
<si:t1avor-allowed-init-keywords flavor-name)

Returns a list of any init
keywords a flavor can take.

146

Program Development Utilities February 1985

147

February 1985 Program Development Tools and Techniques

6. Calculation Module for the Sample Program

The program used as an example in this document draws the recursive arrow
graphic on the document's cover. This section contains Lisp code that calculates
coordinates for the endpoints of the lines that compose the figure. The code
produces output by sending messages to instances of flavors defined in another file.
For the code for the flavors and methods that mediate between the program and the
system output operations: See the section "Output Module for the Sample
Program", page 165. For a reproduction of the LGP graphic the program produces:
See the section "Graphic Output of the Sample Program", page 185.

;;; -*- Mode: LISP; Package: (GRAPHICS GLOBAL 1000); Base: 10 -*­
;;; Copyright (c) 1983 Symbolics, Inc.

#11
This file contains the calculation module for a program that
reproduces the recursive arrow graphic printed on the covers
of most Symbolics documents. The module calculates the
coordinates of the endpoints of line segments to be drawn.
It transmits these coordinates to a separate output module,
which contains the code needed to produce the figure on an
appropriate output device.

We use paper coordinates, origin at bottom left.

Each arrow in the figure can be seen as inscribed in a square
whose apex is at (apex-x, apex-y). Each arrow has a head and
a shaft. Top-edge is the top edge of each arrow, one of the
sides of the arrowhead. There are two classes of arrow in
the figure: The small arrows are the general case, and the
large, outer arrow is unique. The differences are the
structures of the shafts and the recursive appearance of
the small arrows.

The module uses special variables to store information about
the current arrow, including the length of the top edge and
the coordinates of the vertexes.

The module first calculates coordinates for the vertexes of
the large, outer arrow. If the arrows are to be striped, it
determines the endpoints of the lines that make up the large
arrow's stripes, first in the head and then in the shaft.

148

Program Development Utilities

The module then recursively calculates coordinates for each of
the small arrows inside the figure. It outlines and stripes
one arrow at a time. For each arrow, the module first
calculates the coordinates of the vertexes of the head. If the
arrows are to be striped, it then determines the coordinates of
the endpoints of the lines that make up the current arrow's
stripes, first in the head and then in the shaft.

The output module initiates the calculation module by calling
DRAW-ARROW-GRAPHIC with three arguments: the length of the
figure's top edge and the coordinates of the top right point
(pO in the large arrow). This module transmits coordinates to
the output module by sending :SHOW-LINES messages to instances
of output flavors. The arguments to :SHOW-LINES are the
coordinates of the endpoints of lines to be drawn. The current
instance of the output flavor is the value of the special variable
DEST.

(apex-x, apex-y)

February 1985

149

February 1985 Program Development Tools and Techniques

/ \
/ \

/ \
/ \

/ \
I \

/ top-edge \
p1 / -----------------------------\ pO
1\\
1\\

/ \ \
/ \ \

/ \ p2 \
/ I \

/ I \
\ / /

\ / /
\ I p5 I

\ / / \ /
\ / / \ /

\ / \ /
p3 \ / \ I

\ I \ I
\ I I p6

\ I I
\ I

p4 \ I
\ I

\ I
\ I

\/

Points 3 and 4 are obscured, except in the case of the big arrow.
11#

;;; Following are declarations for special variables and constants

(defconst *d1* 0.15
"Proportion of distance filled in between upper right stripes")

(defconst *d2* 0.75
"Proportion of distance filled in between lower left stripes")

(defconst *stripe-distance* 20
"Horizontal distance in pixels between stripes of large arrow")

150

Program Development Utilities

(defconst *max-depth* 7
"Number of levels of recursion")

(defconst *do-the-stripes* t
"If T, permits striping")

(defconst *dest* nil
"Object to which output is sent")

(defvar *depth* 0
"Current level of recursion")

(defvar *top-edge* nil
"Length of the top edge of the arrow")

(defvar *top-edge-2* nil
"Ha1f the length of the top edge of the arrow")

(defvar *top-edge-4* nil
"One-fourth the length of the top edge of the arrow")

(defvar *x2* nil
"X-coord of projection of lower left stripe on top edge")

(defvar *stripe-d* nil
"Horizonta1 distance in pixels between stripes")

(defvar *pOx* nil
"X-coordinate of the tip of the arrow")

(defvar *pOy* nil
"V-coordinate of the tip of the arrow")

(defvar *plx* nil
"X-coordinate of point pl in the arrow")

(defvar *ply* nil
"V-coordinate of point pl in the arrow")

(defvar *p2x* nil
"X-coordinate of point p2 in the arrow")

(defvar *p2y* nil
"V-coordinate of point p2 in the arrow")

(defvar *p3x* nil
"X-coordinate of point p3 in the arrow")

February 1985

151

February 1985 Program Development Tools and Techniques

(defvar *p3y* nil
"V-coordinate of point p3 in the arrow")

(defvar *p4x* nil
"X-coordinate of point p4 in the arrow")

(defvar *p4y* nil
"V-coordinate of point p4 in the arrow")

(defvar *p5x* nil
"X-coordinate of point p5 in the arrow")

(defvar *p5y* nil
"V-coordinate of point p5 in the arrow")

(defvar *p6x* nil
"X-coordinate of point p6 in the arrow")

(defvar *p6y* nil
"V-coordinate of point p6 in the arrow")

;;; Following are the controlling functions for this module

", Function controlling the calculation module.
", Controls the calculation of the coordinates of the endpoints of the
.,. lines that make up the figure. The three arguments are the length of
". the top edge and the coordinates of the top right point of the large
••• arrow. DRAW-ARROW-GRAPHIC calls DRAW-BIG-ARROW to draw the large arrow
", and then calls DO-ARROWS to draw the smaller ones.
(defun draw-arrow-graphic (*top-edge* *pOx* *pOy*)

;; Bind global variables
(let «*top-edge-2* (II *top-edge* 2»

(*top-edge-4* (II *top-edge* 4»
;; Compute horizontal distance between stripes in the large
;; arrow, assuming 64 stripes in the large arrowhead.
(*stripe-distance* (II *top-edge* 64»)

(draw-big-arrow) ;Draw large arrow
" Length of the top-edge for the first small arrow is half the
;; length for the large arrow. Bind new coordinates for the top
;; right point of the small arrow.
(let «*top-edge* *top-edge-2*)

(*pOx* (- *pOx* *top-edge-2*»
(*pOy* (- *pOy* *top-edge-2*»
(*depth* 0»

(do-arrows) ») ; Draw small arrows

152

Program Development Utilities

" ,
; ; ;

" ,

;; ;

Recursive function contro11ing drawing of the small arrows.
If below the maximum recursion level, draws a small arrow. Binds
new values for depth, top edge, and coordinates of top right point,
and calls self recursively to draw a left-hand child arrow. Binds
special variables again and calls self to draw a right-hand child

;;; arrow.
(defun do-arrows ()

;; Don't exceed maximum recursion level
(when « *depth* *max-depth*)

;; ;

" ,
; ; ;

;; Bind values for half and one-fourth of top edge
(let «*top-edge-2* (II *top-edge* 2»

(*top-edge-4* (II *top-edge* 4»)
(draw-arrow) ;Draw a small arrow
;; Increment depth. Divide top edge in half. Bind new
;; coordinates for top right point of next arrow.
(let «*depth* (1+ *depth*»

(*top-edge* *top-edge-2*)
(*pOx* (+ *top-edge-4* (- *pOx* *top-edge*»)
(*pOy* (- *pOy* *top-edge-4*»)

;; Draw a left-hand child arrow
(do-arrows»

;; Increment depth. Divide top edge in half. Bind new
;; coordinates for top right point of next arrow.
(let «*depth* (1+ *depth*»

(*top-edge* *top-edge-2*)
(*pOx* (- *pOx* *top-edge-4*»
(*pOy* (+ *top-edge-4* (- *pOy* *top-edge*»»

" Draw a right-hand child arrow
(do-arrows»»)

The following functions are common to the large and small arrows

Calculates coordinates of points visible in large and small arrows.
'---The four points that bound the head of each arrow are the only ones

February 1985

; ; ; visible in the small arrows. Points 3 and 4 -- the base of the arrow
;;; -- are obscured, except in the large arrow. We calculate these in
;;; compute-arrow-shaft-points.
(defun compute-arrowhead-points ()

(let* «plx (- *pOx* *top-edge*»
(ply *pOy*)
(p2x (+ plx *top-edge-4*»
(p2y (- *pOy* *top-edge-4*»
(p6x *pOx*)
(p6y (- *pOy* *top-edge*»
(p5x (- *pOx* *top-edge-4*»
(p5y (+ p6y *top-edge-4*»)

(values plx ply p2x p2y p5x p5y p6x p6y»)

iX-coord, point 1
iV-coord, point 1
iX-coord, point 2
iV-coord, point 2
iX-coord, point 6
iV-coord, point 6
iX-coord, point 5
iV-coord, point 5

153

February 1985 Program Development Tools and Techniques

••• Calculates horizontal distance between stripes.
;;; Distance is a fraction of the distance between stripes for the
••• large arrow. The divisor depends on the level of recursion .
••• Distance divides length of top edge evenly when possible to
;;; maintain continuity between head and shaft of arrow.
(defun compute-stripe-d ()

;; Distance should be at least 3 pixels so that there is some
;; white space between lines.
(if (~ *stripe-distance* 3) 3

; ; ;

;; ;

; ; ;
;; ;

;; First find a fraction of *STRIPE-DISTANCE* that depends
;; on recursion level
(loop for dist = (fixr (II *stripe-distance*

(se1ectq *depth*
(0 2)
(1 4)

(2 2)
(3 1.5)
(4 1.5)
(otherwise 2»»

;; Increment if it doesn't divide *TOP-EDGE* evenly
then (1+ dist)
when (= 0 (\ *top-edge* dist»
;; Stop when no remainder. Don't return a value
;; less than 3.
do (return (if (~ dist 3) 3 dist»»)

Calculates the number of lines that compose each stripe.
Calls COMPUTE-DENS to calculate the proportion of distance
between stripes to be filled, then multiplies by the actual
distance between stripes. Makes sure that there is at least
one line and that there aren't too many lines to leave some

;;; white space.
(defun compute-n1ines (x)

;; Call COMPUTE-DENS and multiply result by *STRIPE-D*
(let «n1 (fix (* *stripe-d* (compute-dens x»»)

;; Supply at least one line
(cond «~ n1 1) 1)

;; But leave some white space between lines
«~ n1 (- *stripe-d* 1» (- *stripe-d* 2»
(t n1»»

154

Program Development Utilities

'" Calculates proportion of distance filled in between each stripe.
;;; The argument is the x-coordinate of the projection of the current
;;; stripe onto the line formed by the top edge. Determines where the
'" projection of the current stripe is on this line in relation to the
;;; distance from first to last stripes in the arrow. Multiplies this
;;; fraction by the difference between densities of first and last
;;; stripes. Finally, adds the density of the first stripe.
(defun compute-dens (x)

(+ *dl* (* (- *d2* *dl*)
(II (- x *pOx*) (float (- *x2* *pOx*»»»

;;; The following two functions stripe the arrowheads. The
;;; heads of the large and small arrows are identical, so we
;;; use the same functions to stripe both.

;;; Function controlling striping of the head of each arrow.
;;; Determines coordinates of starting and ending points for each
;;; stripe. Calls COMPUTE-NLINES to determine number of lines for
;;; the stripe. Calls DRAW-ARROWHEAD-LINES to draw the lines that
;;; make up each stripe.
(defun stripe-arrowhead ()

;; Find x-coord of top of last stripe to be drawn
(loop with last-x = (- *pOx* *top-edge*>

;; Find starting x-coord for each stripe, decrementing
;; by distance between stripes. Stop at last x-coord.
for start-x from *pOx* by *stripe-d* above last-x
;; Find ending y-coord for each stripe, decrementing by
;; distance between stripes.
for end-y downfrom *pOy* by *stripe-d*
;; Find number of lines in the stripe
for nlines = (compute-nlines start-x)
;; Draw the lines that make up the stripe
do (draw-arrowhead-lines nlines start-x end-y last-x»)

February 1985

155

February 1985 Program Development Tools and Techniques

", Draws the lines that make up each stripe in an arrowhead.
", Arguments are number of lines in the stripe, starting x-coord
", and ending y-coord of first line, and x-coord of top of last
", stripe to be drawn. Decrements by one pixel when drawing each
", line.
(defun draw-arrowhead-lines (nlines start-x end-y last-x)

;; Set up a counter
(loop for i from 0 below nlines

;; ;

;; Find starting x-coord, subtracting counter from first
;; x-coord
for first-x = (- start-x i)
;; Hake sure we don't go past the end of the arrowhead
while « last-x first-x)
" Draw a line
do (send *dest* ':show-lines

first-x *pOy* *pOx* (- end-y i»»

The following functions draw and stripe the large arrow

Function controlling drawing of the large arrow.
Calls functions to find coordinates of vertexes of the arrow.

;;; Outlines the arrow. Binds distance between stripes and x-coord
;;; of projection of last stripe onto top edge. Finally, stripes
", head and shaft of arrow when required.
(defun draw-big-arrow ()

;; Determine coordinates of arrowhead vertexes
(multiple-value-bind

(*plx* *ply* *p2x* *p2y* *p5x* *p5y* *p6x* *p6y*)
(compute-arrowhead-points)

;; Determine coordinates of shaft vertexes
(multiple-value-bind

(*p3x* *p3y* *p4x* *p4y*)
(compute-arrow-shaft-points)

(draw-big-outline) ;Outline arrow
(when *do-the-stripes*

;; Bind distance between stripes and x-coord of projection
;; of last stripe onto top edge
(let «*stripe-d* *stripe-distance*)

(*x2* (- *pOx* *top-edge* *top-edge*»)
(stripe-arrowhead) ;Stripe head
(stripe-big-arrow-shaft»»» ;Stripe shaft

156

Program Development Utilities

;;; Calculates coordinates for vertexes of shaft of large arrow.
;;; These points are obscured and not drawn for the small arrows.
(defun compute-arrow-shaft-points ()

(values (- *plx* *top-edge-4*)
(- *p2y* *top-edge-2*)
p2x
(- *p2y* *top-edge*»)

;;; Draws the outline of the large arrow.
(defun draw-big-outline ()

(send *dest* ':show-lines

;X-coord of point 3
;V-coord of point 3
;X-coord of point 4
;V-coord of point 4

pOx *pOy* *plx* *ply* *p2x* *p2y* *p3x* *p3y*
p4x *p4y* *p5x* *p5y* *p6x* *p6y* *pOx* *pOy*»

;;; The next seven functions stripe the shaft of the large arrow.
;;; First is a controlling function. then three functions to stripe
;;; the left side and three more to stripe the right.

;;; Function controlling striping of the shaft of the large arrow.
;;; Just calls STRIPE-BIG-ARROW-SHAFT-LEFT to stripe the left side
••• and STRIPE-BIG-ARROW-SHAFT-RIGHT to stripe the right side.
(defun stripe-big-arrow-shaft ()

(stripe-big-arrow-shaft-left)
(stripe-big-arrow-shaft-right»

February 1985

157

February 1985 Program Development Tools and Techniques

". Function controlling striping of left side of big arrow's shaft.
;;; Iterates over the triangles that make up the shaft. Determines
;;; coordinates of the apex and bottom right point of each triangle.
;;; Calls DRAW-BIG-ARROW-SHAFT-STRIPES-lEFT to stripe each triangle.
(defun stripe-big-arrow-shaft-left ()

;; Set up a counter for depth. Don't exceed maximum recursion
;; level.
(loop for shaft-depth from 0 below *max-depth*

;; Find current top edge and its fractions
for top-edge = *top-edge* then (II top-edge 2)
for top-edge-2 = (II top-edge 2)
for top-edge-4 = (II top-edge 4)
;; Find coordinates of apex of triangle
for apex-x = *p2x* then (- apex-x top-edge-2)
for apex-y = *p2y* then (- apex-y top-edge-2)
;; Find x-coord of bottom right vertex
for right-x = (+ apex-x top-edge-4)
;; Find y-coord of bottom edge of triangle
for bottom-y = (- apex-y top-edge-4)
;; Find the x-coord of the projection of the first
;; stripe onto top edge
for xoff = (- *pOx* *top-edge*) then (- xoff top-edge)
;; Stripe each triangle
do (draw-big-arrow-shaft-stripes-left

top-edge-4 apex-x apex-y right-x bottom-y xoff»)

158

Program Development Utilities

;; ;

;; ;

;; ;

;; ;

; ; ;

Stripes each triangle in left side of big arrow's shaft.
Arguments are one-fourth current top edge, x- and y-coords
of apex of triangle, x- and y-coords of bottom right vertex,
and x-coord of projection of first stripe onto top edge.
Determines coordinates of starting and ending points for
each stripe. Finds number of lines in the stripe. Calls
DRAW-BIG-ARROW-SHAFT-LINES-LEFT to draw the lines that

;;; make up each stripe.
(defun draw-big-arrow-shaft-stripes-left

(top-edge-4 apex-x apex-y right-x bottom-y xoff)
(loop with half-distance = (II *stripe-distance* 2)

;; Find x-coord of last stripe in triangle
with last-x = (- apex-x top-edge-4)
" Find x-coord of top of each stripe, decrementing
;; from the apex by HALF the horizontal distance
;; between stripes. Stop at last stripe.
for start-x from apex-x by half-distance above last-x
;; Find y-coord of top of stripe
for start-y downfrom apex-y by half-distance
;; Find x-coord of endpoint of stripe
for end-x downfrom right-x by *stripe-distance*
;; Find number of lines in the stripe
for nlines = (compute-nlines (- xoff (- right-x end-x»)
;; Draw a stripe
do (draw-big-arrow-shaft-lines-left

nlines start-x start-y end-x bottom-y last-x»)

February 1985

159

February 1985 Program Development Tools and Techniques

;;; Draws the lines for a stripe on left side of big arrow's shaft.
;;; Arguments are number of lines in the stripe, coords of starting
'" and ending points for first line, and x-coord of last stripe to
'" be drawn.
(defun draw-big-arrow-shaft-lines-left

(nlines start-x start-y end-x end-y last-x)
;; Set up two counters -- we need to draw two lines at once
(loop for i from 0

for i2 from 0 by 2
;; Find x-coord of top of first line in stripe
for first-x = (- start-x i)
;; Don't exceed number of lines in stripe
while « i2 nlines)
;; Don't go past the end of the triangle
while « last-x first-x)
;; Draw a line
do (send *dest* ':show-lines first-x (- start-y i)

(- end-x i2) end-y)
" Draw a second line. The two lines are a refinement
;; to stagger the endpoints of the lines so the diagonal
;; edge looks neat.
(send *dest* ':show-lines first-x (- start-y i 1)

(- end-x i2 1) end-y»)

;;; Function controlling striping of right side of big arrow's shaft.
;;; Iterates over the triangles that make up the shaft. Determines
'" coordinates of the top point of each triangle. Calls
;;; DRAW-BIG-ARROW-SHAFT-STRIPES-RIGHT to stripe each triangle.
(defun stripe-big-arrow-shaft-right ()

;; Set up a counter for depth. Don't exceed maximum recursion
; ; level.
(loop for shaft-depth from 0 below *max-depth*

;; Find new top edge and its fractions
for top-edge = *top-edge* then (II top-edge 2)
for top-edge-2 = (II top-edge 2)
for top-edge-4 = (II top-edge 4)
;; Find coords of top point of triangle
for start-x = (+ *p2x* top-edge-4)
for top-y = (- *p2y* *top-edge-4*)
then (- top-y top-edge-2 top-edge-4)
;; Find x-coord of projection of first stripe onto
;; top-edge
for xoff = (- *pOx* *top-edge*) then (- xoff top-edge)
;; Stripe the triangle
do (draw-big-arrow-shaft-stripes-right

top-edge-2 top-edge-4 start-x top-y xoff»)

160

Program Development Utilities

'" Stripes each triangle in right side of big arrow's shaft.
;;; Arguments are one-half and one-fourth of current top edge,
;;; coords of top point of the triangle, and x-coord of projection
;;; of first stripe onto top edge. Determines coordinates of
;;; starting and ending points for each stripe. Finds number of
;;; lines that make up the stripe. Calls
'" DRAW-BIG-ARROW-SHAFT-lINES-RIGHT to draw a stripe.
(defun draw-big-arrow-shaft-stripes-right

(top-edge-2 top-edge-4 start-x top-y xoff)
(loop with half-distance = (II *stripe-distance* 2)

;; Find y-coord of last stripe in triangle
with last-y = (- top-y top-edge-2)
;; Find y-coord of starting point of stripe. Don't go
;; past the end of the triangle.
for start-y from top-y by *stripe-distance* above last-y
;; Find coords of ending point of the stripe, decrementing
;; by HALF the horizontal distance between stripes
for end-x downfrom (+ start-x top-edge-4) by half-distance
for end-y downfrom (- top-y top-edge-4) by half-distance
;; Find number of lines that make up the stripe
for nlines = (compute-nlines (- xoff (- top-y start-y»)
;; Draw a stripe
do (draw-big-arrow-shaft-lines-right

nlines start-x start-y end-x end-y last-y»)

;;; Draws the lines for a stripe on right side of big arrow's shaft.

February 1985

;;; Arguments are number of lines in the stripe, coordinates of starting
". and ending points for the first line, and y-coord of last stripe in
;;; the triangle.
(defun draw-big-arrow-shaft-lines-right

(nlines start-x start-y end-x end-y last-y)
;; Set up two counters -- we need to draw two lines at once
(loop for i from 0

for i2 from 0 by 2
;; Find y-coord of ending point of line
for stop-y = (- end-y i)
;; Don't exceed number of lines in the stripe
while « i2 nlines)
;; Don't go past the bottom of the triangle
while « last-y stop-y)
;; Draw a line
do (send *dest* ':show-lines start-x (- start-y i2)

(- end-x i) stop-y)
" Draw a second line. The two lines are a refinement
,. to stagger the endpoints of the lines so the diagonal
" edge looks neat.
(send *dest* ':show-lines start-x (- start-y i2 1)

(- end-x i 1) stop-y»)

161

February 1985 Program Development Tools and Techniques

;;; The remaining functions draw and stripe one of the small arrows

;;; Function controlling drawing of a small arrow.
;;; Calculates coordinates of the arrowhead and outlines it. Binds x-coord
;;; of the projection of the last stripe onto the top edge. Calculates
;;; the horizontal distance between stripes. When necessary, stripes the
;;; head and shaft of the arrow.
(defun draw-arrow ()

;; Calculate coordinates of arrowhead vertexes
(multiple-value-bind

(*plx* *ply* *p2x* *p2y* *p5x* *p5y* *p6x* *p6y*)
(compute-arrowhead-points)

;; Outline the arrowhead
(draw-outline)
(when *do-the-stripes*

;; Bind x-coord of projection of last stripe onto top edge
(let «*x2* (- *pOx* *top-edge* *top-edge*»

;; Calculate distance between stripes
(*stripe-d* (compute-stripe-d»)

(stripe-arrowhead)
(stripe-arrow-shaft»»)

;Stripe head
;Stripe shaft

;;; Draws the outline of the head of a small arrow.
(defun draw-outline ()

(send *dest* ':show-lines *p2x* *p2y* *plx* *ply*
pOx *pOy* *p6x* *p6y* *p5x* *p5y*»

162

Program Development Utilities

'" Function controlling striping of the shaft of a small arrow.
'" Iterates over the descending triangles that make up the shaft.
;;; Calculates the coordinates of the top left and bottom right
;;; vertexes of each triangle. Finds the x-coord of the
;;; projection of the first stripe onto top edge. Calls
;;; DRAW-ARROW-SHAFT-STRIPES to stripe each triangle.
(defun stripe-arrow-shaft ()

;; Set up a counter for depth. Don't exceed maximum
;; recursion level.
(loop for shaft-depth from *depth* below *max-depth*

;; Calculate fractions of new top edge
for top-edge-2 = *top-edge-2* then (II top-edge-2 2)
for top-edge-4 = (II top-edge-2 2)
;; Find coords of top left point of triangle
for left-x = *p2x* then (- left-x top-edge-4)
for top-y = *p2y* then (- top-y top-edge-2 top-edge-4)
;; Find coords of bottom right point of triangle
for right-x = (+ left-x top-edge-2)
for bottom-y = (- top-y top-edge-2)
;; Find x-coord of projection of first stripe onto top edge
for xoff = (- *pOx* *top-edge*)
then (- xoff top-edge-2 top-edge-2)
;; Stripe the triangle
do (draw-arrow-shaft-stripes

left-x top-y right-x bottom-y xoff»)

;;; Stripes each triangle in the shaft of a small arrow.
;;; Arguments are coordinates of the top left and bottom right
;;; points of the triangle, and the x-coord of the projection
;;; of the first stripe onto top edge. Calculates the y-coord
;;; of the starting point and the x-coord of the ending point
;;; of each stripe. Finds number of lines in the stripe. Calls
;;; DRAW-ARROW-SHAFT-lINES to draw the lines in the stripe.
(defun draw-arrow-shaft-stripes

(left-x top-y right-x bottom-y xoff)
;; Find y-coord of starting point of stripe. Don't go
;; below the bottom of the triangle.
(loop for start-y from top-y by *stripe-d* above bottom-y

;; Find x-coord of ending point of the stripe
for end-x downfrom right-x by *stripe-d*
;; Find number of lines in the stripe
for nlines = (compute-nlines (- xoff (- right-x end-x»)
;; Draw a stri pe
do (draw-arrow-shaft-lines

nlines left-x start-y end-x bottom-y»)

February 1985

163

February 1985 Program Development Tools and Techniques

;;; Draws the lines in a stripe in the shaft of a small arrow.
;;; Arguments are the number of lines in the stripe and the
'" coordinates of the starting and ending points of the first line.
(defun draw-arrow-shaft-lines

(nlines left-x start-y end-x bottom-y)
;; Set up a counter. Don't exceed number of lines in the stripe.
(loop for i from 0 below nlines

;; Find x-coord of ending point of the line
for last-x = (- end-x i)
;; Don't go past the left edge of the triangle
while « left-x last-x)
" Draw a line
do (send *dest* ':show-lines left-x (- start-y i)

last-x bottom-y»)

164

Program Development Utilities February 1985

165

February 1985 Program Development Tools and Techniques

7. Output Module for the Sample Program

The program used as an example in this document draws the recursive arrow
graphic on the document's cover. This section contains Lisp code that defines the
flavors and methods that mediate between the program and the system output
operations. For the code that calculates coordinates for the endpoints of the lines
that compose the figure: See the section "Calculation Module for the Sample
Program", page 147. For a reproduction of the LGP graphic the program produces:
See the section "Graphic Output of the Sample Program", page 185.

;;; -*- Mode: LISP; Package: (GRAPHICS GLOBAL 1000); Base: 10 -*­
;;; Copyright (c) 1983 Symbolics, Inc.

Nil
This file contains the output module for a program that
reproduces the recursive arrow graphic printed on the covers
of most Symbolics documents. The module allows the graphic
to be produced on a Lisp Machine screen, a Laser Graphics
Printer, or an LGP record file. For each of these devices,
the module produces output by sending appropriate messages
with the coordinates of the endpoints of line segments to
be drawn. This module receives these coordinates from a
separate calculation module.

For screen output, the module creates its own windows. It
defines a basic flavor of window that accepts point
coordinates in the screen coordinate system, with origin
at top left. It defines a more specialized window, built
on the basic window, for use with a calculation module that
uses LGP coordinates, with origin at bottom left. It
allows a process to be associated with each window and
lets users modify the characteristics of the figure.

For LGP output, the module makes an instance of a flavor
with the output stream as an instance variable. Output is
directed to either a hardcopy device or a record file.

This module defines the top-level function, DO-ARROW, that
is called to produce the graphic. This function pops up
a choose-variable-values window to allow users to select the
output device and the characteristics of the figure. The
module defines conditions and handlers for attempts to give
variables impermissible values.

166

Program Development Utilities

This module determines the size of the figure and its
position within the page or window. It then calls the
function DRAW-ARROW-GRAPHIC in the calculation module.
It passes as arguments the length of the top edge of the
figure and the coordinates of the top right point. The
calculation module sends :SHOW-LINfS messages to instances
of output flavors. The arguments to :SHOW-LINES are the
coordinates of the endpoints of lines to be drawn. The
current instance of the output flavor is the value of the
special variable *DEST*.
11#

;;; Following are declarations for special variables

(defvar *dest-string* "Screen"
"Destination of program output [Screen, LGP, or File]")

(defvar *output-file* nil
"Pathname for LGP-record-file output")

(defvar *fill-proportion* 0.9
"Proportion of smaller dimension to be filled by figure")

;;; The following flavor and its methods are common to both
;;; screen and LGP output

February 1985

167

February 1985 Program Development Tools and Techniques

(defflavor arrow-parameter-mixin
(width height top-edge right-x top-y)
()

(:gettable-instance-variables top-edge right-x top-y)
(:required-methods :compute-width-and-height)
(:documentation :mixin
"Provides parameters for size and position of figure.

Instance variables hold width and height of page or window;
length of top edge of figure; and coordinates of top right point
of figure. Methods calculate size and position of figure by
centering it within the page or window and making it fill no
more than the specified proportion of the smaller dimension.
The methods use a coordinate system with origin at bottom left;
other mixins must correct for this if output is going to a
window. Other flavors must also provide a method for calculating
width and height of the page or window. This flavor should be
mixed into any instantiable flavor that produces output for the
arrow graphic."»

;; ;

;; ;

;; ;

;; ;

Method controlling calculation of size and position of figure.
Sends messages to self to calculate width and height of page
or window, length of top edge of figure, and coordinates of
figure's top right point. These are separate methods so that
other flavors can shadow them or add daemons. Another flavor

", must provide a method to compute width and height, because
", this is specific to the output device.
(defmethod (arrow-parameter-mixin :compute-parameters) ()

;; Another flavor must supply method for width and height
(send self ':compute-width-and-height)
;; Make a preliminary estimate of length of top edge
(send self ':compute-top-edge)
;; Adjust top edge to make it a multiple of 128
(send self ':adjust-top-edge)
;; Calculate coordinates of top right point of figure.
;; We can't do this until we know how long top edge is.
(send self ':compute-right-x)
(send self ':compute-top-y»

168

Program Development Utilities

;;; Hakes a preliminary estimate of length of top edge.
;;; The top edge of the arrow is 80 percent of the horizontal
", or vertical length of the whole figure. First finds the
", smaller of the length or width of the page or window.
;;; Hultiplies this by the proportion of this dimension that
;;; is to be filled by the figure. The result is the
". horizontal or vertical length of the figure. Hultiplies
;;; this by 0.8 to get the length of the top edge.
(defmethod (arrow-parameter-mixin :compute-top-edge) ()

(setq top-edge
(fixr (* 0.8 *fill-proportion* (min width height»»)

;;; Adjusts length of top edge so it is a multiple of 128.
;;; There are 64 stripes in the head of the large arrow. The
;;; calculation module divides the length of top edge by two
", each time it goes down another recursion level. By making
;;; the original top edge a multiple of 128, we maximize
;;; continuity in striping between arrowheads and shafts and
;;; among the first several levels of recursion.
(defmethod (arrow-parameter-mixin :adjust-top-edge) ()

(setq top-edge
;; Hinimum length of top edge is 128
(if « top-edge 256) 128

;; Otherwise set to next lower multiple of 128
(* 128 (fix (II top-edge 128»»»

", Calculates x-coordinate of top right point of figure.
;;; Finds horizontal length of figure by dividing length of
", top edge by 0.8. Centers the figure horizontally within
;;; the page or window.
(defmethod (arrow-parameter-mixin :compute-right-x) ()

(setq right-x
(fixr (* 0.5 (+ width (II top-edge 0.8»»»

;;; Calculates y-coordinate of top right point of figure.
;;; Assumes that the origin is at bottom. Finds vertical
;;; length of figure by dividing length of top edge by 0.8.
", Centers the figure vertically within the page or window.
(defmethod (arrow-parameter-mixin :compute-top-y) ()

(setq top-y
(fixr (* 0.5 (+ height (II top-edge 0.8»»»

;;; Following are flavors and methods for screen output

February 1985

169

February 1985 Program Development Tools and Techniques

{defflavor basic-arrow-window-mixin
(do-stripes max-dep fill-prop)
()

:initable-instance-variables
(:required-flavors arrow-parameter-mixin tv:window)
(:default-init-plist
:edges-from ':mouse :minimum-width 200 :minimum-height 200
:bl inker-p nil :expose-p t)

(:documentation :mixin
"Provides for a basic window to display the arrow graphic.

ARROW-PARAMETER-MIXIN is needed to position the figure within
the window. Instance variables hold values for maximum
recursion level, proportion of window to be filled, and
whether or not to stripe the figure. This flavor assumes
window coordinates, with origin at top left. It provides its
own :COMPUTE-TOP-V method to use that origin. It provides a
method to find the width and height of the window, as
ARROW-PARAMETER-MIXIN requires. This flavor has a :SHOW-LINES
method to receive point coordinates from the calculation
module and draw lines on the window. It provides a :MAIN-LOOP
method so that the window can run in its own process and let
the user modify the graphic. TV:LIST-MOUSE-BUTTONS-MIXIN is
needed to handle mouse clicks if this method is used. This
flavor provides standard :AFTER daemons for the Window-system
:INIT, : REFRESH, and :CHANGE-OF-SIZE-OR-MARGINS messages. This
flavor should be mixed in with ARROW-PARAMETER-MIXIN and
TV:WINOOW for any window that produces the graphic. It
should be included before ARROW-PARAMETER-MIXIN so that the
:COMPUTE-TOP-V method shadows correctly."»

170

Program Development Utilities

;;; Receives endpoint coordinates and draws lines on a window.
;;; Arguments are alternating x- and y-coordinates of the end-
;;; points of lines to be drawn. If there are more than two pairs
;;; of coordinates, assumes that the endpoint of one line is the
;;; starting point of the next. Sends messages for separate methods
;;; to determine the actual coordinates. This is so that other
;;; flavors can modify the coordinates. Draws a line by sending self
;;; a :DRAW-LINE message, and so assumes that TV:GRAPHICS-MIXIN is
;;; included somewhere to provide this method.
(defmethod (basic-arrow-window-mixin :show-lines)

(x y &rest x-y-pairs)
;; First determine the starting point of the line. On
" subsequent trips through the loop, the last endpoint
" becomes the next starting point.
(loop for xO = (send self ':compute-x x) then xl

for yO = (send self ':compute-y y) then yl
;; "Cddr" down the list created by making all but the
;; first pair of coordinates an &rest argument
for (xl yl) on x-y-pairs by #'cddr
;; Determine the endpoint of the line
do (setq xl (send self ':compute-x xl)

yl (send self ':compute-y yl»

;; Draw the line
(send self ':draw-line

xO yO xl yl tv:alu-ior t»)

;;; Determines the x-coordinate of an endpoint of a line.
;;; This is a separate method so that other flavors can shadow
;;; it or add daemons to manipulate the coordinate.
(defmethod (basic-arrow-window-mixin :compute-x) (x)

(fixr x»

;;; Determines the y-coordinate of an endpoint of a line.
;;; Assumes that the argument already uses window coordinates,
;;; with origin at top left. This is a separate method so that
;;; other flavors can shadow it or add daemons to manipulate
;;; the coordinate.
(defmethod (basic-arrow-window-mixin :compute-y) (y)

(fixr y»

;;; Finds the inside width and height of the window.
;;; Sends self an :INSIDE-SIZE message, and so assumes that
;;; TV:SHEET is included somewhere to provide this
;;; method.
(defmethod (basic-arrow-window-mixin

:compute-width-and-height) ()
(multiple-value (width height)

(send self ':inside-size»)

February 1985

171

February 1985 Program Development Tools and Techniques

" ,
; ; ;

Calculates y-coordinate of top right point of figure.
Finds vertical length of the figure by dividing the length
of top edge by 0.8. Centers the figure vertically within
the window. Gives the result in window coordinates, with
origin at top left. This method shadows that in
ARROW-PARAHETER-HIXIN.

(defmethod (basic-arrow-window-mixin :compute-top-y) ()
(setq top-y

(fixr (* 0.5 (- height (II top-edge 0.8»»»

'" Calculates size and position of figure after initialization.
'" Binds the global variable *fill-proportion* to the value of
;;; the corresponding instance variable so that the figure will
'" be drawn correctly if the value of *fill-proportion* has
'" changed.
(defmethod (basic-arrow-window-mixin :after :init) (ignore)

(let «*fill-proportion* fill-prop»
(send self ':compute-parameters»)

'" Calculates size and position of figure after window change.
;;; Binds the global variable *fill-proportion* to the value of
;;; the corresponding instance variable so that the figure will
'" be drawn correctly if the value of *fill-proportion* has
'" changed.
(defmethod (basic-arrow-window-mixin

:after :change-of-size-or-margins) (&rest ignore)
(let «*fill-proportion* fill-prop»

(send self ':compute-parameters»)

172

Program Development Utilities

;;; Draws the figure when necessary after window is refreshed.
'" Binds the global variable *dest* to self and the variables
;;; *do-the-stripes* and *max-depth* to the corresponding instance
;;; variables so the figure win be drawn correctly if the values
;;; of the global variables have changed.
(defmethod (basic-arrow-window-mixin :after :refresh)

(&optional type)
;; Draw figure if not restored from a bit-save array
(when (or (not tv:restored-bits-p)

;; ... or size has changed ...
(eq type ':size-changed)
;; ... or new values for figure parameters.
(eq type ':new-vals»

;; If restored from a bit-save array, clear screen first
(when tv:restored-bits-p

(send self ':clear-screen»
;; Bind global variables to self and instance variables
(let «*dest* self)

(*do-the-stripes* do-stripes)
(*max-depth* max-dep»

" Draw the figure
(draw-arrow-graphic top-edge right-x top-y»»

;;; Provides a mouse documentation line for the window.
;;; The only option is to click right and pop up a
;i; choose-variable-values window of options for changing
;;; the graphic on this window.
(defmethod (basic-arrow-window-mixin

:who-line-documentation-string) ()

February 1985

"R: Choose-variable-values options for changing figure on this window")

173

February 1985 Program Development Tools and Techniques

'" Command loop for window associated with a separate process.
;;; Consists of an error-restart-loop that handles restarts from
;;; errors and sys:abort. Waits for mouse input. If a right
;;; click, pops up a choose-variable-values window to change
;;; characteristics of the figure. On exit, sets instance variables
;;; to the new values and refreshes the window, then waits for another
;;; mouse click. Assumes blips are lists of the form provided
'" by TV:LIST-MOUSE-BUTTONS-HIXIN.
(defmethod (basic-arrow-window-mixin :main-loop) ()

;; Run forever in a loop. Offer a restart handler if an error
;; or sys:abort is signalled.
(error-restart-loop «error sys:abort) "Arrow Window Top Level")

;; Wait for input
(let «char (send self ':any-tyi»)

;; Pop up window if input is a list
(when (and (listp char)

;; ... and a mouse click
(eq (first char) ':mouse-button)
;; ... and a single click on the right button.
(eq (second char) #\mouse-r-l»

;; Bind global variables to instance-variable values
(let «*do-the-stripes* do-stripes)

(*max-depth* max-dep)
(*fill-proportion* fill-prop»

" Pop up a choose-variable-values window
(tv:choose-variable-values

'«*do-the-stripes* "Stripe the arrows?" :boolean)
(*max-depth* "Number of recursion levels" :number)
(*fill-proportion*

"Fraction of window to be filled" :number»
;; Make the window wide to provide enough room for error
;; messages.
':extra-width 20
;; Call a function to check for errors when values change
':function 'check-item
;; Give the user a chance to abort
':margin-choices '("Do It" ("Abort" (signal 'sys:abort»)
':label "Choose Options for Graphic")

;; Set instance variables to the new values
(setq do-stripes *do-the-stripes*

max-dep *max-depth*
fill-prop *fill-proportion*)

;; Recompute size and position of the figure
(send self ':compute-parameters)
;; Send :REFRESH message with argument of ':new-vals to make
;; sure the figure is redrawn if there is a bit-save array
(send self ':refresh ':new-vals»»»

174

Program Development Utilities

(defflavor basic-arrow-window ()
(basic-arrow-window-mixin
arrow-parameter-mixin
tv:any-tyi-mixin
tv:list-mouse-buttons-mixin
tv:process-mixin
tv:window)

(:documentation :combination
"Instantiable flavor providing a basic window for output.

Though this flavor is instantiable, its methods assume that
point coordinates use the window coordinate system, with
origin at top left. To work with the current calculation
module it needs another mixin to convert LGP to screen
coordinates. In the component flavors, BASIC-ARROW-WINDOW-HIXIN
must come before ARROW-PARAHETER-HIXIN and TV:WINDOW for
shadowing and daemons to work correctly. TV:PROCESS-HIXIN
and TV:LIST-HOUSE-BUTTONS-HIXIN are not necessary unless the
window is associated with a separate process and the :HAIN-LOOP
method of BASIC-ARROW-WINDOW-HIXIN is the command loop."»

(defflavor 19p-window-mixin
((scale-factor 2.5»
()

(:required-flavors basic-arrow-window)
(:documentation :mixin
"Converts LGP to screen coordinates and vice versa.

When mixed in with BASIC-ARROW-WINDOW, this flavor allows
window output with a calculation module that uses LGP
coordinates. The instance variable SCALE-FACTOR is the
ratio of LGP to screen pixel density. The methods take
the height and width of the window in screen pixels and
calculate the length of the top edge and the coordinates
of the top right point of the figure in LGP pixels. In
drawing lines on the window, the methods convert LGP to
window coordinates. These methods shadow those in
ARROW-PARAHETER-HIXIN and BASIC-ARROW-WINDOW-HIXIN."»

Converts x-coord of line endpoint from LGP to screen pixels.
Corrects for higher density of LGP pixels. This method shadows
that of BASIC-ARROW-WINDOW-MIXIN.

(defmethod (lgp-window-mixin :compute-x) (x)
(fixr (II x scale-factor»)

February 1985

175

February 1985 Program Development Tools and Techniques

;;; Converts y-coord of line endpoint from LGP to screen pixels.
;;; Corrects for higher density of LGP pixels and for screen origin
'" at top left. This method shadows that of BASIC-ARROW-WINDOW-MIXIN.
(defmethod (lgp-window-mixin :compute-y) (y)

(fixr (- height (II y scale-factor»»

;; ;

; ; ;

; j ;

; ; ;

; ; ;

Calculates top edge in LGP pixels from screen proportions.
Multiplies length of smaller dimension, in screen pixels, by
proportion of this dimension to be filled by the figure.
Multiplies this by 0.8 to find top edge in screen pixels.
Corrects for higher density of LGP pixels. This method
shadows that of ARROW-PARAMETER-MIXIN.

(defmethod (lgp-window-mixin :compute-top-edge) ()
(setq top-edge

(fixr (* scale-factor 0.8 *fill-proportion*
(min width height»»)

'" Calculates x-coord of top right point in LGP pixels.
;;; Finds horizontal length of figure in screen pixels by
'" dividing top edge by 0.8. Centers figure horizontally
'" in window, correcting for higher density of LGP pixels.
'" This method shadows that of ARROW-PARAMETER-MIXIN.
(defmethod (lgp-window-mixin :compute-right-x) ()

(setq right-x

;; ;

;; ;

(fixr (* 0.5 (+ (* width scale-factor)
(II top-edge 0.8»»»

Calculates y-coord of top right point in LGP pixels.
Finds vertical length of figure in screen pixels by
dividing top edge by 0.8. Centers figure vertically
in window, correcting for higher density of LGP pixels.
This method shadows those of ARROW-PARAMETER-MIXIN and
BASIC-ARROW-WINDOW-MIXIN.

(defmethod (lgp-window-mixin :compute-top-y) ()
(setq top-y

(fixr (* 0.5 (+ (* height scale-factor)
(II top-edge 0.8»»»

(defflavor arrow-window ()
(lgp-window-mixin basic-arrow-window)

(:documentation :combination
"Instantiable flavor for window output from LGP coordinates.

This flavor has all the features of BASIC-ARROW-WINDOW but
assumes that the calculation module uses LGP coordinates. This
is the flavor to instantiate for window output using the
current calculation module."»

176

Program Development Utilities

;;; The following flavor and methods are for LGP output

(defflavor 19p-pixel-mixin
(output-stream)
()

:initable-instance-variables
(:required-flavors arrow-parameter-mixin)
(:documentation :mixin
"Provides methods for arrow graphic output on an LGP stream.

ARROW-PARAHETER-HIXIN is required to calculate the size of the
figure and position it in the center of the page. This flavor

I has a method to calculate the width and height of the page, as
ARROW-PARAHETER-HIXIN requires. It has a :SHOW-LINES method to
receive point coordinates from the calculation module and draw
lines on the output stream. The method assumes that coordinates
are in LGP pixels. The method also assumes that flavor
LGP:BASIC-LGP-STREAH is included in output stream to provide
:SEND-COHHAND and :SEND-COORDINATES messages. This flavor
should be mixed, along with ARROW-PARAHETER-HIXIN, into an
instantiable flavor for LGP output. When that flavor is
instantiated, the instance variable output-stream should be
in it i ali zed. "»

;; ;

;; ;

; ; ;
;; ;

;; ;

" ,
" ,
; ; ;

Receives endpoint coordinates and draws lines on LGP stream.
Arguments are alternating x- and y-coordinates of endpoints of
lines to be drawn. If there are more than two pairs of
coordinates, assumes that the endpoint of one line is the
starting point of the next. Draws a line by sending output
stream :SEND-COHHAND messages for LGP commands and
:SEND-COORDINATE messages for LGP coordinates. Assumes that
flavor LGP:BASIC-LGP-STREAH is included in output stream to

;;; provide these methods.
(defmethod (lgp-pixel-mixin :show-lines)

(xO yO &rest x-y-pairs)
;; Send command and coordinates to start drawing lines
(send self ':send-command-and-coordinates #/m xO yO)
;; "Cddr" down the list created by making all but the first
;; pair of coordinates an &rest argument
(loop for (x y) on x-y-pairs by #'cddr

;; Send command and coordinates to draw a line
do (send self ':send-command-and-coordinates #/v x y»)

February 1985

177

February 1985 Program Development Tools and Techniques

;;; Sends line-drawing commands to LGP output stream.
;;; :SEND-COHHAND transmits an LGP command. :SEND-COORDINATES
;;; transmits coordinates of an endpoint of a line to be drawn.
;;; Assumes that LGP:BASIC-LGP-STREAH is included in output stream
'" to provide these methods.
(defmethod (lgp-pixel-mixin :send-command-and-coordinates) (cmd x y)

(send output-stream ':send-command cmd)
(send output-stream ':send-coordinates (fixr x) (fixr y»)

;; ;

; ; ;

" ,
; ; ;

Finds width and height of a page for LGP output.
This flavor is required by ARROW-PARAHETER-HIXIN. Finds the
values of two instance variables of LGP:BASIC-LGP-STREAH:
SI:PAGE-WIDTH and SI:PAGE-HEIGHT. Assumes that

;;; LGP:BASIC-LGP-STREAH is included in output stream to provide
;;; these instance variables.
(defmethod (lgp-pixel-mixin :compute-width-and-height) ()

(setq width (symeval-in-instance output-stream 'si:page-width)
height (symeval-in-instance output-stream 'si:page-height»)

(defflavor 19p-pixel-stream ()
(lgp-pixel-mixin arrow-parameter-mixin)

(:documentation :combination
"Instantiable flavor for arrow output on LGP stream.

Assumes that the calculation module uses LGP coordinates.
When this flavor is instantiated, the LGP-PIXEL-HIXIN
instance variable OUTPUT-STREAH should be initialized.
The output stream can be directed to an LGP or a file,
but it must include flavor LGP:BASIC-LGP-STREAH for
output to work correctly."»

;;; Following are condition flavors for bad variable values

(defflavor bad-arrow-variable () (error)
(:documentation
"Noninstantiable class of bad-variable conditions.

The user might set some variables to impermissible values.
These conditions are to permit checking for bad values
beyond the system's error checking. Instantiable condition
flavors for specific variables should be built on this
flavor."»

178

Program Development Utilities

(defflavor bad-arrow-depth () (bad-arrow-variable)
(:documentation
"Proceedable condition: bad value for *HAX-DEPTH*.

An instantiable condition flavor for impermissible values
of *HAX-DEPTH*, the number of recursion levels in the
figure."»

;;; Prints string on stream to report bad *HAX-DEPTH* value
(defmethod (bad-arrow-depth :report) (stream)

(format stream "No. of levels was not a -
nonnegative fixnum.H»

;;; Proceed type method for supplying new value of *HAX-DEPTH*
(defmethod (bad-arrow-depth :case :proceed :new-depth)

(&optional (dep (prompt-and-read
':number
"Supply new value for -

no. of recursion levels: H»~)

"Supply a new value for number of recursion levels."
(values ':new-depth dep»

(defflavor bad-arrow-fill-proportion () (bad-arrow-variable)
(:documentation
"Proceedable condition: bad value for *FILL-PROPORTION*.

An instantiable condition flavor for impermissible values of
FILL-PROPORTION, the fraction of the smaller dimension of
the page or window that the figure is to fill."»

;;; Prints string on stream to report bad *FILL-PROPORTION* value.
(defmethod (bad-arrow-fill-proportion :report) (stream)

(format stream "Proportion was not a fraction between -
o and 1."»

'" Proceed type method for new value of *FILL-PROPORTION*
(defmethod (bad-arrow-fill-proportion :case :proceed

:new-proportion)
(&optional (prop (prompt-and-read

':number
"Supply new fraction of bounds -

be fi 11 ed: "»)
"Supply a new fraction of page or window to be filled."
(values ':new-proportion prop»

;;; Top-level function

February 1985

179

February 1985 Program Development Tools and Techniques

;;; Top-level function to call to produce arrow graphic.
'" Pops up a choose-variab1e-va1ues window to let user specify
'" output destination, number of recursion levels, proportion
;;; of smaller dimension of page or window to be filled, and
'" whether or not to stripe figure. If screen output, makes a
'" window. If LGP output, makes an LGP stream and calls
". ORAW-ARROW-GRAPHIC to draw the figure.
(defun do-arrow ()

;; Pop up a choose-variable-values window
(tv:choose-variab1e-va1ues

'«*do-the-stripes* "Stripe the arrows?" :boo1ean)
(*max-depth* "Number of recursion levels" :number)
(*fi11-proportion*

"Fraction of page or window to be filled" :number)
(*dest-string* "Output destination"

:choose ("Screen" "LGP" "File"»
(*output-fi1e* "Pathname for file output" :pathname»

;; Hake window wide enough to accommodate long pathnames
;; and error messages
':extra-width 20.
;; Call this function when a value is changed
':function 'check-item
;; Give user a chance to abort
':margin-choices '("Do It" ("Abort" (signal 'sys:abort}»
':labe1 "Choose Options for Graphic")

180

Program Development Utilities

;; If figure is infinitely small, just return nil
(cond «= *fi11-proportion* 0) nil)

;; If screen output, make a window
«equal *dest-string* "Screen")
(tv:make-window 'arrow-window

;; Initialize instance variables to
;; values set by the user
':do-stripes *do-the-stripes*
':max-dep *max-depth*
':fi11-prop *fi1l-proportion*
;; Specify top-level function for the
;; process associated with the window
':process '(window-loop»)

;; If lGP or file output, use an appropriate stream
(t (with-open-stream

(stream
;; This function returns a stream suitable for
;; lGP output
(si:make-hardcopy-stream

;; Argument is the output device. For lGP,
;; use the default hardcopy device.
(if (equal *dest-string* "lgp")

si:*default-hardcopy-device*
;; For file output, use the correct format
;; for the hardcopy device and direct
;; output to the file specified by the user
(lgp:get-lgp-record-file-hardcopy-device

output-fi1e»»
;; Hake an instance of our lGP output flavor
(1 et « *des t*

(make-instance 'lgp-pixel-stream
;; Initialize instance
;; variable to output stream
':output-stream stream»)

;; Position the figure on the page
(send *dest* ':compute-parameters)
;; Draw the figure, using instance-variable values
;; as arguments
(draw-arrow-graphic (send *dest* ':top-edge)

(send *dest* ':right-x)
(send *dest* ':top-y»»»)

February 1985

181

February 1985 Program Development Tools and Techniques

;; ;

;; ;

" ,

Top-level function for process associated with arrow window.
The function is called when the window is created. Argument is
the window. The function sends the window a :HAIN-LOOP message.
This method should be the actual command loop for the process.

(defun window-loop (window)
(send window ':main-loop»

;;; Function to ch~ck variable values

'" Called when a value changes in choose-variable-values window.
;;; Arguments are the window, the variable, and its old and new values.
'" Binds handlers for conditions for impermissible values. If ne\'!
;;; value is OK, sets variable to the new value, refreshes window, and
;;; returns t. If value is not OK, signals the appropriate condition.
'" When SIGNAL returns, presumably with a new variable value, checks
;;; the new value in the same way it checks a new value that comes
;;; from the window.
(defun check-item (cvv-window var old-val new-val)

;; We don't use the old value. To avoid a compiler complaint,
;; just evaluate it and ignore it. We could also use IGNORE
" instead of OLD-VAL in the arglist, but then the arglist
;; would be less meaningful.
old-val
;; Bind handlers for the conditions we might signal
(condition-bind «bad-arrow-depth 'bad-arrow-var-handler)

(bad-arrow-fi11-proportion
'bad-arrow-var-hand1er»

(when (eq var '*max-depth*)
;; *HAX-DEPTH* must be nonnegative fixnum
(loop until (and (fixp new-val) (~ new-val 0»

;; If it's not, bind QUERV-IO to the window and
;; signal a condition. SIGNAL should return
" two values, the proceed type and the new
;; value from the proceed method. Ignore the
;; proceed type and set NEW-VAL to the new
" value.
do (let «query-io cvv-window»

(multiple-value (nil new-val)
(signal 'bad-arrow-depth»»)

182

Program Development Utilities

(when (eq var '*fi11-proportion*)
;; *FILL-PROPORTION* must be between 0 and 1
(loop until (and (~ new-val 0) (~ new-val 1»

;; If it's not, bind QUERY-IO to the window and
;; signal a condition. SIGNAL should return
;; two values, the proceed type and the new
" value from the proceed method. Ignore the
" proceed type and set NEW-VAL to the new
;; value.
do (let «query-io cvv-window»

(multiple-value (nil new-val)
(signal 'bad-arrow-fi11-proportion»»)

;; Variable value is now OK. Set variable to the new value.
;; Note that we DO want to evaluate VAR.
(set var new-val)
;; Refresh the window
(send cvv-window ':refresh)
;; Return t
t»

;;; Handler for bad-variab1e-va1ue conditions

February 1985

183

February 1985 Program Development Tools and Techniques

;;; Handler for bad value of *MAX-DEPTH* or *FILL-PROPORTION*.
;;; Argument is the condition object created by SIGNAL. Uses QUERV-IO
'" stream to report condition. Sends the condition object a :PROCEED
;;; message and passes back the values it returns.
(defun bad-arrow-var-hand1er (cond-obj &aux b1)

;; Find out whether this object has the right proceed type.
;; If not, return nil.
(if (send cond-obj ':proceed-type-p

(cond «typep cond-obj 'bad-arrow-depth) ':new-depth)
«typep cond-obj 'bad-arrow-fi11-proportion)
':new-proportion»)

;; Enclose the handling operation in an UNWIND-PROTECT so that
" if we use a blinker we are sure to turn it off
(unwind-protect

(progn
;; Use a blinker if the QUERV-IO stream is a window
(setq bl (if (typep query-io 'tv:sheet)

;; If a cursor-following blinker exists, use it
(or (tv:sheet-fo1lowing-b1inker query-io)

;; Otherwise, make a new blinker
(tv:make-b1inker query-io

'tv:rectangu1ar-b1inker
, : f 011 ow -P t»»

;; If a blinker, make it blink
(if b1 (send b1 ':set-visibi1ity ':b1ink»
;; Alert the user
(tv:beep)
;; Send a report, presumably describing the condition
(send cond-obj ':report query-io)
;; Send object a :PROCEED message and return the values
;; that the method returns
(send cond-obj ':proceed

(cond «typep cond-obj 'bad-arrow-depth) ':new-depth)
«typep cond-obj 'bad-arrow-fi1l-proportion)
':new-proportion»»

;; If a blinker, turn it off
(if bl (send bl ':set-visibi1ity nil»»)

;;; This macro expression causes combined methods to be compiled at
'" compile time and data structures to be generated at load time.
", Otherwise, these things happen at run time, when the first
;;; instance of a flavor is made.
(compile-flavor-methods arrow-window 19p-pixel-stream

bad-arrow-depth bad-arrow-fill-proportion)

184

Program Development Utilities February 1985

185

February 1985 Program Development Tools and Techniques

8. Graphic Output of the Sample Program

The program used as an example in this document draws the recursive arrow
graphic on the document's cover. This section contains a reproduction of the LGP
graphic the program produces. For the Lisp code that calculates coordinates for the
endpoints of the lines that compose the figure: See the section "Calculation Module
for the Sample Program", page 147. For the code that defines the flavors and
methods that mediate between the program and the system output operations: See
the section "Output Module for the Sample Program", page 165.

186

Program Development Utilities February 1985

-,87

February 1985 Maintaining Large Programs

PART II.

Maintaining Large Programs

188

Program Development Utilities February 1985

189

February 1985 Maintaining Large Programs

9. Introduction to the System Facility

When a program gets large, it is often desirable to split it up into several files. One
reason is to help keep the parts of the program organized, to make things easier to
find. Another is that programs broken into small pieces are more convenient to edit
and compile. It is particularly important to avoid the need to recompile all of a large
program every time any piece of it changes; if the program is broken up into many
files, only the files that have changes in them need to be recompiled.

The apparent drawback to splitting up a program is that more mechanism is needed
to manipulate it. To load the program, you now have to load several files separately,
instead of just loading one file. To compile it, you have to figure out which files
need compilation, by seeing which have been edited since they were last compiled,
and then you have to compile those files.

An even more complicated factor is that files can have interdependencies. You might
have a file called "defs" that contains some macro definitions (or flavor or structure
definitions), and functions in other files might use those macros. This means that
in order to compile any of those other files, you must first load the file "defs" into
the Lisp environment, so that the macros will be defined and can be expanded at
compile time. You would have to remember this whenever you compile any of those
files. Furthermore, if "defs" has changed, other files of the program might need to
be recompiled because the macros might have changed and need to be reexpanded.

Finally, you might want to generate multiple versions of the program - a stable
version for general users to run, another for development purposes; source control for
the various versions would be a nearly impossible to maintain manually.

This chapter describes the system facility, which addresses these difficulties. A
system is a set of files and a set of rules and procedures that defines the relations
among these files; together these files, rules, and procedures constitute a complete
program.

1. You specify these files and relationships by defining the system, using the
system facility's defsystem special form. The definition, often called a system
declaration, specifies such information as the names of the files (or modules) in
your system and what operations should be performed on which file in what
order (for example, which fues should be compiled, loaded, or both, and which
should be loaded first). See the section "Defining a System", page 191.

2. This system definition should be placed into its own fue. You also must create
two other files that make your system site-independent. The goal is to make
your system run at any site, not just the one on which it physically resides.
(Imagine the problems that would occur if you moved your program to another
host machine, and you had to update every single pathname listed in your
system defInition!) See the section "Loading the System DefInition", page 217.

190

Program Development Utilities February 1985

3. You can make the system, that is, have the Symbolics Lisp Machine perform
the operations specified in your system defInition, by using the make-system
function or relevant Command Processor commands (Load System and Compile
System). For example, make-system loads all the files of the system,
recompiles all the files that need compiling, and so on. See the section
"Making a System", page 221 ..

4. The patch facility lets you make and distribute incremental fixes and
improvements to your system, called patches, thereby avoiding recompilation or
reloading of the entire system. By maintaining a patch registry, a detailed
record keeping system, the patch facility allows developers to maintain multiple
versions of the same system. See the sectio~ "Patch Facility", page 231.

5. Various functions exist to help you find information about existing systems.
See the section "Getting Information About a System", page 249.

191

February 1985 Maintaining Large Programs

10. Defining a System

A system is a set of files and a set of rules and procedures that defines the relations
among these files; together these files, rules, a.."ld procedures constitute a complete
program. The system definition (called the system declaration) describes these
relationships and rules. Some useful, general guidelines are:

1. Use Zmacs to enter the declaration in its own file, with a canonical type of
:lisp. The system declaration file also contains a package declaration for the
system (if necessary) and any user-defined defsystem transformations. Both
must precede the system declaration in t~ file. See the section "System
Declaration File", page 218.

2. Wherever a pathname is required in your system declaration use logical
pathnames, not physical pathnames. Logical pathnames provide a way of
referring to files in a site-independent way. They also make it possible to
move the sources from one machine to another within a site.

3. Assuming that you have used logical pathnames, you need to prepare two
other files: the system file and the translations file. The system file defines a
logical host, specifies the location of the system declaration file, and loads the
translations file. The translations file defines the translation from logical
directories on the logical host to physical directories on a physical host. See
the section "Loading System Definitions That Use Logical Pathnames", page
217.

4. Call make-system to compile and load your system, as in

(make-system 'system-name :compile :noconfirm)

make-system uses the information in the translations file to load the system
declaration file, compiling it first if necessary. Alternatively, you can also use
the Command Processor's Compile System command to compile and load your
system.

defsystem name &bodyoptions Special Form
Defines a system called name. The system definition (called the system
declaration) describes a group of relations among a group of files that
constitute at least one complete program. The declaration provides
information on (1) the files that make up the system, (2) which files depend
on the previous compilation or loading of others, and (3) the characteristics of
the system, for example, the package into which the object code should be
compiled. make-system and the relevant Command Processor commands
compile and load your system in accordance with the properties specified in
your system declaration.

options to defsystem are keywords and fall into three categories:

192

Program Development Utilities February 1985

• Characteristics of the system, for example, its name .
• Modules - sets of files that should be compiled or loaded as a unit.
• Transformations - operations (like compilation or loading) that are

performed on the system's files or modules.

General Guidelines for Using defsystem

The following example shows a simple but typical defsystem declaration.
The purpose is to illustrate what a declaration looks like, including its major
components, and to provide some important definitions and general guidelines.

(defsystem registrar
;; These options describe the characteristics of the system.
(:name "Automatic Registration System")
(:pathname-default "reg:reg;")

;; The system has 3 modules.
(:module main "top-level")
(:module definitions ("variables" "macros" "more-macros"»
(:module resources "resources")

;; The system decl ares that the :compile-Ioad
;; transformation should be performed on each module.
(:compile-load definitions)
(:compile-load resources (:fasload definitions»
(:compile-load main (:fasload definitions resources»)

Note these impor~t points.

Characteristics.

• The value of the :name option, "Automatic Registration System", is the
user-visible name, appearing in completion tables, heralds, and so on.

• The default pathname is specified as a logical pathname. You are
urged to use logical pathnames in system declarations, as they provide a
way of referring to files in a site-independent way. They also make it
possible to move the sources from one machine to another within a site.

Modules.

• The :module option defines what files or groups of files compose the
system. The definitions module consists of three files; the other two
modules, of only one file each. When a module consists of more than
one file, the file names must be placed in a list, as in:
(:module definitions ("variables" "macros" "more-macros"»
Module declarations must precede the transformation declarations in the
defsystem form.

February 1985

193

Maintaining Large Programs

• The files that compose a single module are treated as a unit.
Therefore, one file in a module cannot depend on the previous loading
of another file in that module. So, if "more-macros" depends on the
previously loading of "macros", then "macros" and "more-macros" cannot
be placed in the same module. The ordering of files within a module
specification is not significant.

• The files in a single module should share the same characteristics.
Customarily the set of files grouped in a module perform some similar
function, as long as the files do not depend on one another. For
example, all low-level definitions (variables and macros) might be placed
in the same module.

Transfonnations.

• A transformation is an operation to perform on a file or module. For
example, :fasload is a transformation and means load the specified
binary files of this module. :compile-Ioad is another transformation,
meaning load this module, compiling it first under certain conditions.
For example, if the call to make-system specifies the :recompile
option, then all the source files are recompiled, whether or not they are
newer than their associated binary versions. A call to make-system
with no options loads but does not compile the system's files, regardless
of whether or not they need to be recompiled.

• The relationship of one defsystem module to another can be described
as a hierarchy of dependencies. For example, modules often depend on
other modules having been previously loaded. The files within a module
share this characteristic: they have the same dependencies.

• A dependency declares that under certain circumstances all of the
indicated transformations must be performed on the indicated modules
before the current transformation itself can take place. Consider the
following transformation specification.

(:compile-load resources (:fasload definitions»

In this case, the :fasload transformation on the definitions module is a
dependency of the :compile-Ioad transformation on the resources
module. To be more precise, the :fasload transformation is actually a
compile-time dependency, meaning that it applies only when the call to
make-system includes a compile-type option, as in
(make-system 'registrar :compile).

• Transformations can refer to (depend on) only those transformations
that have been previously declared. So resources can depend on
definitions, but not vice versa.

194

Program Development Utilities February 1985

• According to the above declaration, make-system will load the main
module (presumably the top-level program) last, after definitions and
resources have been loaded (and perhaps compiled).

• (:compile-load main (:fasload definitions resources» expresses this
dependency.

defsystem Options

defsystem options can be categorized as (1) characteristics of the system, (2)
modules, and (3) transformations. Only the first category of options is
described in this section, in the order in which options conventionally appear
in the declaration. (See the section "defsystem Modules", page 198. See the
section "defsystem Transformations", page 201.)

:name

:short-name

:package

:name specifies the name of the system for use in printing.
This is the user-visible name appearing in completion tables,
heralds, and so on.

Example: Based on the following declaration, the herald
displays the name of the registrar system as Automat i c
Registration System.
(defsystem registrar

(:name "Automatic Registration System")
(:short-name "Registration")
(:pathname-default "reg:reg;")
...)

:short-name specifies an abbreviated name used in
constructing disk label comments and patch file names for
some file systems.

Example: Based on the following declaration, the name of
the patch files of the registrar system are constructed
from the system short name. Assuming that the logical
patch directory ("reg: reg; patch;") translates to
"s:>sr>registrar>patch>", then the name of the first patch
file for major version #1 of registrar is:
"s:>sr>registrar>patch>registration-l>registration-l-l.lisp".

(defsystem registrar
(:name "Automatic Registration System")
(:short-name "Registration")
(:patchable "reg: reg; patch;")
(:pathname-default "reg: reg;")
...)

:package specifies the name of an existing package in

February 1985

195

Maintaining Large Programs

which all transformations are performed. A package
specified in the system declaration overrides the one
specified in the attribute list of the files to which the
transformations are being applied. Typically, the package
declaration for a system is placed in the same file as the
system declaration.

Example: All the modules in mailer are compiledlloaded
into the mail package.
(defpackage mail global 4096. (»

(defsystem mailer

(:package "mail")
(:module defs "defs")
(:module mult "mult")
...)

It is sometimes necessary to selectively override the system's
:package specification, for example, when a system module
needs to use the package specified by the attribute lists of
its files. This end is accomplished by specifying a different
package for that module. See the section ":module Option
for defsystem", page 199.

Note: Your system should be compiled and loaded in its own
unique package. If your system and someone else's system
both define a function called foo, the package specification
will prevent name conflicts. Avoid affecting symbols in the
standard Symbolics-Lisp packages.

:pathname-default
:pathname-default gives a local default within the
definition of the system for strings, to be parsed into
pathnames. Specify that part of the pathname for which
you want to establish a default. You are urged to supply a
logical, not a physical, pathname.
(:pathname-default "sys:zwei;")
This obviates the need to enter the full pathname of each
of the system's files. If the system's files reside in more
than one directory, specify a pathname default for the
directory storing the majority of the files.

:patchable :patchable allows you to make patches for the system.
(See the section "Patch Facility", page 231.) :patchable
takes two optional arguments: directory and patch-atom.
The first optional argument, directory, specifies the directory
to put patch files in. Otherwise patches are stored in the
directory specified by :pathname-default.

196

Program Development Utilities February 1985

The second optional argument, patch-atom, selects a name
for your patch files.

Example: The following entry in the declaration for the
registrar system means that all patch files for system
registrar will have names like "reg-sys-l-l.lisp" or "reg­
sys-1.patch-dir".
(:patchable "reg: reg; patch;" "reg-sys")

See the section "Names of Patch Files", page 236.

:initial-status (:initial-status status) sets the initial status of the system
when make-system is used to create the first major
version. The system version-directory file records the status.
The valid status keywords are :experimental (the default),
:broken, :obsolete, and :released.

:bug-reports

:experimental

:released

:obsolete

:broken

The system has been built but has not
yet been fully debugged and released to
users. The software is not stable.

The system is deemed stable and is
released for general use.

The system is no longer supported.

The system does not work properly.

Note: To change the status of the system recorded in the
system version-directory file, call make-system with the
:update-directory option. The si:set-system-status
function also changes the status of a system but only as
cached in memory.

(:bug-reports list-name mouse-line-string) specifies a name
(a string) for mailing bug reports about the system. Zmail
uses this name in its Bug Mail menu. Supply a
documentation string describing the purpose of the bug
mail; the string appears in the mouse documentation line.

Example: The following specification sends mail to Bug­
Registrar.

(:bug-reports "Registrar"
"Report problems with the Registrar system.")

:not-in-disk-label
:not-in-disk-label makes a patchable system not appear in
the disk label comment. This option is useful for patchable
systems internal to the main Lisp system, to avoid
cluttering up the label.

:maintaining-sites

February 1985

197

Maintaining Large Programs

(:maintaining-sites site-list) specifies the list of sites that
maintain the system. It declares which sites can patch a
system and helps to monitor versions in order to ensure
that no changes are lost. This option is meaningful only
for patchable systems. For example:

(defsystem dla-file-system

(:patchable)
(:maintaining-sites :mit)
...)

The default for :maintaining-sites when it is undeclared is
usually the local site. When you attempt to distribute a
system with an undeclared maintaining site, you are warned
and urged to supply a maintaining site. When you attempt
to patch a system that is not maintained at your site, you
will get a warning.

:component-systems
:component-systems specifies the names of other systems
that are part of this system. Component systems cannot be
patchable, that is, they must not specify the :patchable
option in their defsystem declarations.

The component system will be made during the making of
the containing system; however, the order of loading of the
component system relative to the modules of the containing
system is not guaranteed.

Performing an operation on a system with component
systems is equivalent to performing the same operation on
all the individual systems; for example, assume that the foo
system declaration declares a component system bar and
that the user loads foo as follows: (make-system' foo
: recomp i 1 e). The recompiling operation will be performed
on all the source files in both foo and bar. If
make-system is called without options, then foo and bar
are merely loaded. To compile the component system but
not the containing system, compile the component system
separately (for example, (make-system "bar" :compi le
:noload» and then load the containing system: (make-system
, fool.

The format of the :component-systems option is:
(:component-systems nantel nante2 ...)

Example: The :component-systems specification in the
food-groups declaration means that the fruit and
vegetables systems will be made when food-groups is

198

Program Development Utilities February 1985

made. If food-groups is compiled, then fruit and
vegetables will also be compiled.
(defsystem fruit

(:module citrus ("oranges" "grapefruit"»
(:compile-load citrus)
· ..)

(defsystem vegetables
(:module green ("broccoli" "lettuce"»
(:compile-load green)
· ..)

(defsystem food-groups

(:component-systems fruit vegetables)
· ..)

10.1 defsystem Modules

In addition to specifying the characteristics and transformations of the system, a
detsystem declaration must also specify which files compose the system. For
example, the mysys system contains only two files and has a :compile-load
transformation (operation) performed on each file.

(defsystem mysys
(:compile-load ("sys:george2;progl" "sys:george2;prog2"»)

It is customary, however, though not strictly required, to group a system's files into
modules. A module is one or more files or modules that should be treated as a unit;
transformations, like compilation or loading, operate on the module as a whole. The
above declaration suffices only because the :compile-Ioad transformation does not
have any associated dependencies. Dependencies express relationships only between
modules - not files.

Since the files of a module are treated as a unit, anyone file in a module cannot
depend on the previous compiling/loading of another file in that same module. If file
"b" depends on file "a" having been loaded, then these files cannot be placed in the
same module.

A common organizing principle for deciding which files should constitute a module is
to group those files that perform a similar function, with the restriction that the
files must not depend on one another. For example, all low-level definitions
(variables and macros) might- be placed in the same module.

The relationship of one defsystem module to another can be described as a
hierarchy of dependencies. Modules often depend on other modules {in the same

199

February 1985 Maintaining Large Programs

system or in another system) having been previously loaded. The main program, for
example, presumably depends on the previous loading of the low-level system
definitions.

Once you correctly determine (1) which files should compose a module and (2) which
modules depend on which other modules, you will never have to figure out these
relationships again. make-system will compile and load your system correctly.

:module Option for defsystem

The :module option defines a module, which is a set of files or modules that should
be treated as a unit. The included modules can be internal or external to the
system being defined.

Example: The following code defines two modules. The definitions module consists of
three files; the main module has only one file. When a module consists of more
than one file, the file names must be specified as a list.
(:module definitions ("variables" "macros" "more-macros"»
(:module main "top-level")

The ordering of file or module names within a module is not significant. This rule
also holds for the order of module declarations, with one exception: a module
included in another module must be defined before it is used. The following example
is correct because the mult module is declared before the main module refers to it.
Main can refer to mult, but mult cannot refer to main.
(:module mult "mult") (:module main ("top" "comnds" mult "cometh"»

Along the same lines, all modules must be declared before any transformation can
refer to them.

The format for using the :module option is:

(: modu 1 e name module-specification option ...)

name is the name of the module and is a symbol. Each module has one or more
associated files, which can be referred to collectively by name. In other words, use
name throughout the declaration instead of repeating the file names associated with
the module.

modUle-specification specifies the files or modules named by the module and can be:

A string Represents a file name.

Example: The parser module consists of one file.
(:module parser "parser")

A symbol Represents a module name. The module name stands for all of the files
that are in that module of the current system declaration.

The mult module is defined and then used within the specification of the
main module.

200

Program Development Utilities February 1985

(:module mult "mult")
(:module main ("top" "comnds" mult "cometh"»

An external module component
Expressed as a list of the form (system-name module-names .. .), to
specify modules in another system. Each module name stands for all of
its constituent files or modules. Example:
(defsystem fred

(:module defs "defs")
(:module foo (defs (zmail defs»)
...)

The foo module consists of two other modules: the defs module in the
same system and the defs module in the zmail system. It is not
generally useful to compile files that belong to other systems; thus, this
foo module would not normally be the subject of a transformation.
However, dependencies use modules and need to be able to refer to
(depend on) modules of other systems. See the section "defsystem
Transformations", page 201.

A list of module components
Can be a list of any valid module specification - a string, a symbol, or an
external module component - or a list of file names. A list of module
components is also known as an anonymous module.

Example: The user-interface module specification is a list of strings.
(:module user-interface ("ui-1" "ui-2"»

A list of file names is used when the names of the input and output files
of a transformation are not related according to the standard naming
conventions, for example, when a compiled code file has a different name
(in more than just the file type) or resides in a different directory than
the source file. The file names in the list are used from left to right,
thus, the first name is the source file. Each file name after the first in
the list is defaulted from the previous one in the list.

Example: The prog module consists of one file, but it lives in two
directories, george and george2. Assuming that these are Lisp programs,
that means that the file "q:>george>prog.lisp" is compiled into
"q:>george2>prog. bin".

(:module prog «"q:>george>prog" "q:>george2>prog"»)

Note the syntax of the example. To avoid ambiguity, a list of file names
is allowed as a module component but not as a module specification.

Every file name is treated as if it were an infinite list of file names with
the last file name, or, in the case of a single string, the only file name,
repeated forever at the end.

201

February 1985 Maintaining Large Programs

Each simple transformation takes some number of input file name
arguments, and some number of output file name arguments. As
transformations are performed, these arguments are taken from the front
of the file name list. The input arguments are actually removed, and the
output arguments are left as input arguments to the next higher
transformation. To make this clearer, consider having the :compile-Ioad
compound transformation performed on the prog module.

(:compile-load prog)

This means that prog is given as the input to the :compile
transformation and the output from this transformation is given as the
input to the :fasload transformation. The :compile transformation
takes one input file name argument - the name of a Lisp source file -
and one output file name argument - the name of the compiled code
file. The :fasload transformation takes one input file name argument -
the name of a compiled code file - and no output file name arguments.
So, for the first and only file in the prog module, the file name
argument list looks like ("q:>george>prog" "q:>george2>prog"
"q:>george2>prog" ...). The :compile transformation is given arguments
of "q:>george>prog" and "q:>george2>prog" and the file name argument
list, which it outputs as the input to the :fasload transformation, is
("q:>george2>prog" "q:>george2>prog" ...). The :fasload transformation
then is given its one argument of "q:>george2>prog".

The only valid option to the :module clause is :package. Sometimes a module
needs to use the package specified by the attribute lists of its consti~uent files rather
than the package declared for the system. The :package option to :module
overrides the system package for the duration of the transformations performed on
just this module.

Example: The mult module is compiled into the tv package, whereas the defs module
is compiled to the zwei package.

(defsystem zmail

(:package zwei)
(:module defs "defs")
(:module mult "mult" :package tv)
...)

10.2 defsystem Transformations

In addition to specifying the characteristics of and modules in the system, the
defsystem form must declare all the transformations of the system. A
transformation is an operation, such as compiling or loading, to be performed on a
file or module under certain circumstances. These circumstances include (1) how the

202

Program Development Utilities February 1985

user calls make-system, (2) the system dependencies; that is, how modules depend
on the previous compiling/loading of other modules in the system, and (3) the specific
condition that must be satisfied in order to trigger the transformation.

10.2.1 Interaction Between defsystem Transformations and make-system

The interaction between make-system and defsystem is quite complicated and
resistant to generalizations; however, it is fair to state that make-system in many
ways con troIs how and when a system is made, based on and restricted by the
instructions in the system declaration. For example, make-system determines
which transformations in the declaration take place; compile-type transformations do
not occur unless the call to make-system explicitly specifies a compile-type option.
The invocation (make-system 'foo) would load (by default) but not compile the
system's files, regardless of whether or not the declaration specifies that the
:compile-Ioad transformation be performed on every module in the system. On the
other hand, a request for recompilation (as in (make-system 'foo :recompile» would
not work in the unlikely case where the defsystem form declared only loading
operations.

make-system also controls when each transformation takes place (that is, their
order relative to one another) by looking at the system dependencies stated in the
defsystem form; hence the order in which you declare transformations is not
necessarily the order in which make-system performs them.

make-system must also determine whether the circumstances (conditions) are right
for performing the requested and valid transformations in the system declaration.
For example, a load operation will occur only if the test for loading is satisfied; this is
usually "Is the binary file on disk newer than the version in the current world?" If
not, then the load operation does not happen, regardless of the fact (1) that
make-system by default loads files and (2) that the system declaration specifies that
loading should occur. Every transformation has an associated condition.

The following oversimplified discussion of how make-system processes a defsystem
form might clarify the above points. Consider the following brief extract from the
declaration for system fruit; assume that the user only loads the system:
(make-system 'fruit). Also assume that the machine has been freshly booted, and
so no files from the fruit system are in memory.

(defsystem fruit

(:compile-load apple)
(:fasload banana (:fasload apple»
...)

1. First make-system constructs a list of declared transformations: .
(:compile-load apple) breaks down into a compile of apple and a load of apple;
each step is a separate transformation. (:fasload banana) is one
transformation, a load of the banana module. So make-system's list shows
three transformations:

203

February 1985 Maintaining Large Programs

a. compile apple
b. load apple
c. load banana

Note: make-system performs only those transformations declared in
defsystem form. Thus, it can never compile banana, since no compiling
operation for banana is present.

2. The make-system function checks to see which options were requested by the
user. In this case, none. make-system defaults to loading all files.

3. The next order of business is to match the requested option (by default, a
load) against the current list of transformations to see which of them should
be performed in this execution of make-system. In this example, it matches
load against the three transformations, revising the list like so:

a. load apple
b. load banana

4. Next make-system examines the system dependencies one at a time. Does
the loading of apple depend on the previous loading of another module? No.
It asks the same question about the loading of banana. This time the answer
is yes. The load of banana depends on (: fas load app 1 e). make-system
checks to see that the transformation is going to be done. If not, it adds the
transformation (required by this dependency) to its proper place in the to-do
list. In this example, the dependency requires apple to be loaded before
banana, thus the current list is correct as it stands.

a. load apple
b. load banana

A more complicated declaration with more dependencies might require
make-system to shuffle the list to account for the dependencies. In this
simple example, the order of declaration corresponds to the order of loading.

5. Finally, make-system looks at the condition of each transformation. If the
condition (test) is met, make-system performs the transformation; otherwise,
it deletes the transformation from its list. In the example, the user has not
stated any conditions, so make-system uses the predefined conditions. For
loading, the default condition is "load the binary file on disk if, and only if, it is
newer than the version in the current world".

make-system looks at the first transformation, a load of apple. Since no files
from fruit are in memory, the condition is satisfied, and apple is loaded.

make-system looks at the second transformation, a load of banana. Again
the condition obtains; banana is loaded.

204

Program Development Utilities February 1985

Types of defsystem Transformations

Transformations fall into two categories: simple and compound. A simple
transformation is a single operation on a file. :fasload is an example of a simple
transformation and means load the specified binary files of the indicated module. A
compound transformation takes the output from one transformation and performs
another transformation on it. :compile-Ioad is such a compound transformation
and means load the indicated module, compiling it first under certain conditions.

Example 1: The :fasload simple transformation is performed on the foo module; the
binary version of the files composing the foo module are loaded.

(:module foo "foo")
(:fasload fool

Example 2: The :fasload simple transformation is performed on the output produced
from the :compile transformation being performed on the foo module.

(:module bar ("bar-1" "bar-2"»
(:module foo ("foo-1" bar "foo-3"»
(:fasload (:compile fool)

Example 3: The :compile-Ioad compound transformation is performed on the files
"foo" and "bar". First the files are compiled; the output is loaded.

(:compile-load ("foo" "bar"»

Note that in specifying a transformation the user must supply the name of the
transformation and the input to the transformation, in that order.

• The name is one of the predefined transformations, like :fasload, :compile, or
: compile-load, or a user-defined transformation.

• The input is usually a module name, a module specification, or another
transformation whose output is used.

Examples:

(:fasload fool

(:fasload ("foo" "bar"»

(:fasload (:compile fool)

Dependencies and Conditions

In addition to name and input, which are required, a transformation specification
can optionally include dependencies and a condition. A dependency declares that
under specified circumstances all of the indicated transformations must be performed
on the indicated modules before the current transformation itself can take place. A
condition is a predicate that states in what circumstance the transformation should
occur. Each transformation has a default condition; hence, most users do not
explicitly include the condition of a transformation.

205

February 1985 Maintaining Large Programs

No general rules supply the exact format for every transformation, although there
are common conventions; the arguments are defined individually by the Lisp form
that defines the transformation. For a simple transformation, the general format is:

(name input dependencies condition)

Example: The elements of the :fasload transformation are labelled.
(:compile-load module-1)
(:fasload module-2 (:compile module-1) 'file-exists-p)

name input
I

dependency
I

condition
I I

I I I I

(:fasload module-2 (:compile module-1) 'file-exists-p)

:fasload is the name of the transformation performed on module-2, the input.
(:compile module-I) is a load dependency of the :fasload transformation and
means loading module-2 depends on module-I having been compiled. The previous
transformation (: compi 1 e-l oad modul e-1) explicitly declares this compile operation.
The condition asks the question "Does the file on which the transformation is
applied exist?" If the condition is satisfied, the transformation proceeds.

Note two important points:

• Transformations can refer only to other transformations that have been
previously declared. The transformation on module-2 can refer to (depend on)
the transformation on module-I, but not vice versa.

II The format for expressing a dependency is itself a transformation specification,
which is either a list pairing a transformation and a module name (for
example, (:compi le module-1» or a list of such lists « :compi le module-1)
(:compile module-2». The module name is either a symbol that is the name
of a module in the current system or an external module component.

The format of the most commonly used compound transformation, :compile-Ioad,
looks like:

(name input compile-dependencies load-dependencies
compile-condition load-condition)

Consider the following defsystem form, particularly the :compile-Ioad
transformation specification marked with an asterisk. Example:

(defsystem registrar

(:module main "top-level")
(:module definitions ("variables" "macros" "more-macros"»
(:module resources "resources")

206

Program Development Utilities February 1985

(:compile-load definitions)
* (:compile-load resources (:fasload definitions»

(:compiie-load main (:fasload definitions resources»)

In this case, the :fasload transformation on the definitions module is a dependency
of the :compile-Ioad transformation on the resources module. To be more precise,
the :fasload transformation functions as a compile-time dependency, meaning that it
applies only when the call to make-system includes a compile-type option, as in
(make-system 'registrar :compile). The example does not explicitly state a
condition, so the default condition for the :fasload transformation -
si:file-newer-than-fjil~~4nstalled-p - is assumed. This condition is true when the
file version on disk is newer than the version in the current world. If the condition
is satisfied the transformation is performed.

Transformation specifications can also include load-time dependencies.

Example: Suppose you define a system to create and access a number of data
structures. The structures (defined by defstruct) for accessing these data
structures live in the structure-defs module; the code for creating the structures
lives in the module structure-malting-functions.

The structures module needs both (1) the defstructs declared in structure-defs to
compile the code that accesses the data structures, and (2) the special constructor
functions in structure-malting-functions to create the data structures when it (the
structures module) is loaded by make-system.

Given these dependencies, consider the following transformations.
(:compile-load structure-defs)
(:fasload structure-making-functions)
(:compile-load structures (:fasload structure-defs)

(:fasload structure-making-functions»

In the third transformation (:fasload structure-defs) is the compile-time
dependency of the compiling phase of make-system. (: fas load structure-making­
functions) is the load-time dependency of the loading phase of make-system.

Assuming that make-system is called with the :compile option, what is the effect
of these compile and load dependencies on the actual making of the system? The
result is that the following operations, if they occur, will be performed in this relative
order. During the compile phase of the make-system:

• Load the structure-defs module.
• Compile the structures module.

During the load phase of the make-system:

• Load the structure-making-functions module.
• Load the structures module.

207

February 1985 Maintaining Large Programs

The phrase if they occur in the preceding paragraph refers to the effect of conditions
on whether a transformation occurs. The default condition for compiling is "compile
the source file if it is newer than its binary version". For loading, the equivalent
default is "load the binary file on disk if it is newer than the version in the current
world". Hence the items above can be more precisely written, as follows:

• Load the structure-defs module unless the newest version is already loaded.
• Compile the structures module unless the newest version is already compiled.

During the load phase of the make-system:

• Load the structure-making-functions module unless the newest version is
already loaded.

• Load the structures module unless the newest version is already loaded.

The dependency must be a transformation that was explicitly specified as a
transformation i.n the system definition, not just an action that might have been
performed incidentally. That is, if you have a dependency (:fasload foo), it means
that (:lasload too) must be explicitly declared as a transformation of your system; it
does not simply mean that you depend on foo being loaded. Strictly speaking, you
do not declare (:fasload fool. It is sufficient if a compound transformation,
such as :compile-Ioad, expands into the required transformation on the specified
module, such as in the third example below.

It is not sufficient, however, if the action is performed as part of a transformation
on an anonymous module constructed of other modules, such as in the second
example below. However, the following is correct and works properly:
(defsystem foo

(:module foo "foo")
(:module bar "bar")
(:compile-load (foo bar»)

But the following example will signal an error because foo's :fasload does not occur.
The loading of 100 is performed only implicitly as part of the :fasload
transformation on the anonymous module (foo bar) implicit in the
(:compile-load (foo bar».
Wrong: (defsystem foo

(:module foo "fooH)
(:module bar "bar")
(:module blort "blortH)

(:compile-load (foo bar»
(:compile-load blort (:fasload fool»~

You must instead write:

208

Program Development Utilities

Right: (defsystem foo
(:module foo "roo")
(:module bar "bar")
(:module blort "blort")
(:compile-load foo)
(:compile-load bar)
(:compile-load blort (:fasload foo»)

In the above example, (:fasload fool is part of the expansion of
(:compile-load fool; therefore, it can be used as a dependency.

February 1985

Dependencies are neither transitive nor inherited. For example, suppose module one
depends on macros defined in module two, and therefore needs two to be loaded in
order to compile. Suppose also that module two has a similar dependency on module
three. Module three does not loaded automatically during the compilation of one,
because the system facility does not assume that module one also depends on module
three. Transformations with these dependencies would be written as follows:
(:fasload three)
(:compile-load two (:fasload three»
(:compile-load one (:fasload two»

To express the relationship that the compilation of module one depends on both two
and three, supply the whole history of dependencies:
(:fasload three)
(:compile-load two (:fasload three»
(:compile-load one (:fasload two three»

If, in addition, one depended on three during loading, but not on two (perhaps one
contains defvars whose initial values depend on functions or special variables defined
in module three), the transformations would be written as follows:
(:fasload three)
(:compile-load two (:fasload three»
(:compile-load one (:fasload two three) (:fasload three»

So far nothing has been said about what can be given as a condition for a
transformation, except for the default functions that check for a source file being
newer than the binary, and so on. In general, any function that takes the same
arguments as the transformation function (for example, compile-file) and returns t
if the transformation needs to be performed, can be in this place as a symbol,
including, for example, a closure.

For example, suppose the user defines a function called file-exists-p, whose purpose
is to determine whether its argument, a file name, exists in the file system. If the
file exists, the function returns t; otherwise it returns nil. In this case, the
transformation would be written as follows:
(:module another-file "another-file")
(:module the-file "the-file")
(:fasload the-file (:fasload "another-file") 'file-exists-p)

To specify the condition without the dependency, write the transformation with this
modification:

209

February 1985 Maintaining Large Programs

(:fasload the-file () 'file-exists-p)

To take another example, suppose a file contains compile-flavor-methods for a
system and should therefore be recompiled if any of the flavor method definitions
change. In this case, the condition function for compiling that file should return t if
either the source of that file itself or any of the files that define the flavors have
changed. This is the purpose of the :compile-Ioad-init compound transformation,
which is defined in the si package like this:

(defmacro (:compile-load-init defsystem-macro)
(input add-dep &optional com-dep load-dep
&aux function)

(setq function (let-closed «*additional-dependent-modules*
(parse-module-components

add-dep
system-being-defined»)

'compile-load-init-condition»
'(:fasload (:compile ,input ,com-dep ,function) ,load-dep»

(defun compile-load-init-condition (source-file binary-file)
(or (file-newer-than-file-p source-file binary-file)

(local-declare «special *additional-dependent-modules*»
(other-files-newer-than-file-p

additional-dependent-modules
binary-file»»

The condition function generated when this macro is used returns t either if
file-newer-than-file-p would do so with those arguments, or if any of the other
files in add-dep (which presumably is a module specification) are newer than the
compiled code file. Thus the file (or module) to which the :compile-Ioad-init
transformation applies will be compiled if it or any of the source files on which it
depends has been changed, and will be loaded under the normal conditions. In most
(but not all cases), com-dep would be a :fasload transformation of the same files as
add-dep specifies, so that all the files on which this one depends would be loaded
before compiling it.

10.2.2 List of defsystem Transformations

:fasload :fasload calls the si:load-binary-fUe function to load the indicated files,
which must be compiled code files. The condition defaults to
si:file-newer-than-installed-p, which is t if a newer version of the file
exists on the file computer than was read into the current environment.

:readfile :readfile calls the readfile function to read the indicated files. Use this
for loading files that are not to be compiled, that is, interpreted code.
The condition defaults to si:file-newer-than-installed-p.

:compile :compile calls the compiler:compile-file function to compile the

210

Program Development Utilities February 1985

indicated files. The condition defaults to si:file-newer-than-file-p, which
returns t if the source file has been written more recently than the
compiled code file.

:load-bfd :load-bfd explicitly loads a font that is not in one of the system font
directories by calling the fed:read-font-from-bfd-file function to load the
specified font file(s). See the section "Font Basic Concepts" in Text
Editing and Processing. The condition defaults to
bfd-file-newer-than-installed-p, which returns t if a version of the font
file exists that is newer than the installed version.

:do-components
(:do-components dependencies) inside a system with component systems
causes the dependencies to be done before anything in the component
systems. This is useful when you have a module of macro files used by
all of the component systems. Example:

: compile-load

(defsystem example

(:component-system fool
(:module macros "macros")
(:compile-load macros)
(:do-components (:fasload macros»
...)

:compile-Ioad is the most commonly used compound
transformation.

I (:compile-Ioad input compile-dependencies
load-dependencies compile-condition load-condition)
is the same as

I (:fasload (:compile input compile-dependencies
compile-condition) load-dependencies load-condition)

All arguments after input are optional. The compile condition
determines whether or not the compile dependency will be
performed; the load condition does the same for the load
dependency.

Example: Suppose you define a system to create and access a
number of data structures. The structures (defined by
defstruct) for accessing these data structures live in the
structure-defs module; the code for creating the structures lives in
the module structure-making-functions.

The structures module needs both (1) the defstructs declared in
structure-defs to compile the code that accesses the data
structures, and (2) the special constructor functions in structure­
making-functions to create the data structures when it (the
structures module) is loaded by make-system.

These dependencies of the structures module are expressed in the
following :compile-Ioad transformation.

February 1985

211

Maintaining Large Programs

(:compile-load structure-defs)
(:fasload structure-making-functions)
(:compile-load structures (:fasload structure-defs>

(:fasload structure-making-functions»

(:fasload structure-defs) is the compile-time dependency of
the compiling phase of make-system. (: fas load structure­
making-functions) is the load-time dependency of the loading
phase of make-system.

Assuming that make-system is called with the :compile
option, what is the effect of these compile and load
dependencies on the actual making of the system? The result
is that the following operations, if they occur, will be performed
in this relative order. During the compile phase of the
make-system:

• Load the structure-defs module.
• Compile the structures module.

During the load phase of the make-system:

• Load the structure-making-functions module.
• Load the structures module.

The compile and load conditions determine whether or not the
transformations, compiling and loading, occur. The default
condition for compiling is "compile the source file if it is newer
than its binary version". For loading, the equivalent default is
"load the binary file on disk· if it is newer than the version in
the current world." Hence, to be more precise, the load
transformations above will be performed unless the newest
binary version is already loaded; the compile transformations
will be performed unless the newest version is already
compiled.

:compile-Ioad will not suffice in certain situations. For
example, assume one of the structure definitions in structure­
defs changes. In order for this change to be reflected in the
compiled code for structures module, the structures module
must be recompiled. The transformation in the example does
not in any way guarantee that recompilation will occur. In
this situation use :compile-Ioad-init.

:compile-Ioad-init :compile-Ioad-init compiles the file (or module) to which this
transformation is applied if the file (or module) or any of the
source files on which it depends has been changed, and will
load it under normal conditions. Its format is:

212

Program Development Utilities February 1985

(:compi le-load-init input modules-to-test-for-file-newer-than-file-p
compile-dependency load-dependency)

modules-to-test-for-file-newer-than-file-p must be specified as a
list. The most common use of :compile-load-init is to
recompile files containing compile-flavor-methods for a
system when the definitions of the flavor methods change.

Example 1: cometh is a module that compiles flavor methods.
(streams defs envr buil der devi ces) is the list of modules to
be tested to determine whether any source file is newer than
its associated binary file; these modules contain all the flavor
definitions and methods for the defined system. The effect of
:compile-Ioad-init is to recompile cometh whenever flavor
definitions or methods have changed. The :fasload
transformation is a compile dependency, ensuring that
definitions and methods are loaded when compiling the compile
flavor methods.

(:compile-load-init cometh
(streams defs envr builder devices) ; test dependency
(:fasload streams defs envr builder devices») ; compile dependency

Consider another example, which illustrates why
:compile-Ioad-init is preferred to :compile-Ioad in some
situations.

Example 2: Suppose you define a system to create and access a
number of data structures. The structures (defined by
defstruct) for accessing these data structures live in the
structure-defs module; the code for creating the structures
lives in the module structure-malting-functions.

The structures module needs both (1) the defstructs declared
in structure-defs to compile the code that accesses the data
structures, and (2) the special constructor functions in
structure-malting-functions to create the data structures when
it (the structures module) is loaded by make-system.

These dependencies of the structures module are expressed in
the following :compile-load transformation.
(:compile-load structure-defs)
(:fasload structure-making-functions)
(:compile-load structures (:fasload structure-defs)

(:fasload structure-making-functions»

However, a problem arises when, for example, one of the
structure definitions in structure-defs changes. In order for
this change to be reflected in the compiled code for structures
module, the structures module must be recompiled. The
transformation in the example does not in any way guarantee
that recompilation will occur.

213

February 1985 Maintaining Large Programs

The solution is to use :compile-Ioad-init to add a test
dependency on structure-defs, to guarantee that structures is
compiled if structure-defs has changed.
(:compile-load-init structures (structure-defs)
(:fasload structure-defs)
(:fasload structure-making-functions»

The list (structure-defs) indicates the dependency "when
structure-defs changes".

1 0.2.3 :skip defsystem Macro

It is sometimes useful to specify a transformation upon which something else can
depend, which is not performed by default, but rather only when requested because
of that dependency. The transformation nevertheless occupies a specific place in the
hierarchy.

The :skip defsystem macro allows specifying a transformation of this type. For
example, suppose a special compiler for the readtable is not ordinarily loaded into the
system; the compiled version should still be kept up to date, and it needs to be
loaded if the read table ever needs to be recompiled.

(defsystem reader
(:pathname-default "AI: LHIO;")
(:package system-internals)
(:module defs "RDDEFS")
(:module reader "READ")
(:module read-table-compiler "RTC")
(:module read-table "RDTBL")
(:compile-load defs)
{:compile-load reader (:fasload defs»
{:skip :fasload (:compile read-table-compiler»
(:rtc-compile-load read-table (:fasload read-table-compiler»)

Assume that there is a compound transformation :rtc-compile-Ioad that is like
:compile-Ioad, except that it is built on a transformation called something like
:rtc-compile, which uses the readtable compiler rather than the Lisp compiler. In
the above system, then, if the :rtc-compile transformation is to be performed, the
:fasload transformation must be done on read-table-compiler first; that is, the
read table compiler must be loaded if the readtable is to be recompiled. If you say
<make-system 'reader ':compile), then the :compile transformation will still
happen on the read-table-compiler module, compiling the read table compiler if
necessary. But if you issue <make-system 'reader), the reader and the readtable
will be loaded, but the :skip keeps this from happening to the readtable compiler.

214

Program Development Utilities February 1985

10.3 Adding New Options to defsystem

Options to defsystem are defined as macros on the si:defsystem-macro property
of the option keyword. Such a macro can expand into an existing option or
transformation, or it can have side effects and return nil. They can use several
variables, but the only one of general interest is si:*system-being-defined*.

si:*system-being-defined* Variable
The internal data structure representing the system that is currently being
constructed.

si:define-defsystem-special-variable name fonn Special Fonn
Causes fonn to be evaluated and name to be bound to the result during the
expansion of the defsystem special form. This allows you to define new
variables similar to si:*system-being-defined*.

si:define-simple-transformation name function default-condition Special Fonn
input-file-types output-file-types &optional
pretty-names (compile-like t) (load-like nilll-p)

This is the most convenient way to define a new simple transformation. For
example,

(si:define-simple-transformation :compile si:compile-file-l
s~:file-newer-than-file-p

(:lisp) (:bin»

input-file-types and output-file-types arguments for a transformation specify
how many input file names and output file names to receive as arguments
(in this example one of each).

pretty-names, an optional argument, specifies how the transformation will be
printed in messages to the user. It can be a list of the imperative
("Compile"), the present participle ("Compiling"), and the past participle
("compiled"). Note that the past participle is not capitalized, because it is not
used at the beginning of a sentence. pretty-names can be just a string,
which is taken to be the imperative, and the system will conjugate the
participles itself. If pretty-names is omitted or nil it defaults to the name of
the transformation.

compile-like and load-like, both optional arguments, specify when the
transformation should be performed. Compile-like transformations are
performed when the :compile keyword is given to make-system. Load-like
transformations are performed unless the :noload keyword is given to
make-system. By default compile-like is t but load-like is nil. If you do
not specify load-like, it defaults to the boolean inverse of the compile-like
argument.

Complex transformations are just defined as normal macro expansions, for example,

February 1985

(defmacro (:compile-load si:defsystem-macro)
(input &optional com-dep load-dep

com-cond load-cond)
'(:fasload (:compile ,input ,com-dep ,com-cond)

,load-dep ,load-cond»

215

Maintaining Large Programs

216

Program Development Utilities February 1985

217

February 1985 Maintaining Large Programs

11. Loading the System Definition

11.1 Loading System Definitions That Use Logical Pathnames

Once you have written a large program and defined it as a system, you want
make-system (or the relevant Command Processor commands that call
make-system) to compile and load the system and any patches. Assuming that
your system definition uses logical pathnames, you must write these three files for
make-system to be able to find and load your system:

• System file, named sys:site;system-name.system file
• Translations file, named sys:site;logical-host. translations file
• System declaration file, commonly named

logical-host:logical-directory;system-name.lisp or
logical-host:logical-directory;sysdcl.lisp

The sys:site; logical directory is the repository for all systems, those you define and
those distributed by Symbolics. When a world load is transported to a new site, the
translation file for each logical host that is defined in the current world is reloaded
from the new site's sys:site directory. In this way, all logical pathnames are mapped
into the set of physical pathnames defined at the new site.

11.1.1 Sys:site;System-name.System File

make-system looks in the sys:site; logical directory for the system-name. system file
(the system file) when given a system name that is undefined in your environment.
For example, if you type (make-system 'graphic-l isp) it looks for the file
sys: site;graphic-lisp. system.

The system file contains two forms and looks like this:

(fs:make-Iogical-pathname-host 'Zogical-host")
(si:set-system-source file "system-name"

'Zogical-host:logical-directory; system-name ")

For example, for the system graphic-lisp the file sys: site; graphic-lisp. system
contains the following:

iii -*- Hode: lISPi·Package: USER -*-
(fs:make-logical-pathname-host "graphic-lisp")
(si:set-system-source-file "graphic-lisp"

"graphic-lisp: graphic-lisp; glisp-sys")

The first form, a call to fs:make-Iogical-pathname-host, defines a logical host.
Commonly,. the 'Zogical-host" is the same name as ''system-name''. Make sure that

218

Program Development Utilities February 1985

the fs:make-logical-pathname-host form is the first form in the file, as the second
form, (si:set-system-source-file ...), depends on having the logical host defined
already. fs:make-logical-pathname-host also loads the translations file, which
defines the translation from logical pathnames to physical pathnames.

The second form in the system-name.file is a call to si:set-system-source-file,
which specifies the logical pathname of the system declaration file. make-system,
after referring to the translation definitions, loads the system declaration file.

11.1.2 Sys:site;Logical-host Translations File

The translations file defines the translation from logical directories on the logical host
to physical directories on a physical host. These definitions determine how logical
pathnames are translated to physical pathnames. The file contains only one form, a
call to fs:set-logical-pathname-host, and looks like this.

(fs: set-log i ca l-pathname-host '1ogical-host"
: phys i ca l-host ''host-name''
: trans 1 at ions '(('1ogical-directory;" "physical-directory"»

For example, for the system graphic-lisp the file graphic-lisp. translations contains
the following:

;;; -*- Mode: LISP; Package: FILE-SYSTEM -*-

(set-logical-pathname-host "graphic-lisp"
:physical-host "waikato"
:translations '«"graphic-lisp;" ">sys>graphic-lisp>"»)

To specify a hierarchy of directories instead of a one-to-one translation, you would
change the translations list as follows:

:translations '«"graphic-lisp;**" ">sys>graphic-lisp>**"»)

** means include all subdirectories of "graphic-lisp;".

The translations list consists of two-element lists of strings that represent the logical
directories specified in the system declaration and their associated physical directories.
This list is the only place where your system should refer to a physical host or
directory. In simple applications, where all system files are stored in one directory, it
is common for the logical directory name (for example, "graphic-lisp;") to be the same
as the system name ("graphic-lisp").

This file is loaded in the file-system package by the system file, in which the logical
host is defined by the function fs:make-logical-pathname-host.

11.1.3 System Declaration File

This system declaration file contains the defsystem form defining your system "and,
if you need one, the defpackage form, which must precede the system declaration.
Also this file should contain any user-defined defsystem transformations, which
must precede the actual system declaration.

219

February 1985 Maintaining Large Programs

A sample system declaration file might look like the following:

;;; -*- Hode: LISP; Package: USER; -*-
;;; Created 3/08/82 05:09:13 by PGBRUCE

(defpackage registrar global 2000.»

;;; definition of the registrar system

(defsystem registrar
(:name "Automatic Registration System")
(:pathname-default "reg:reg;")
(:not-in-disk-label)

(:module main "top-level")
(:module definitions ("variables" "macros" "more-macros"»
(:module resources "resources")

;; transformation should be performed on each module.
(:compile-load definitions)
(:compile-load resources (:fasload definitions»
(:compile-load main (:fasload definitions resources»)

Note the attribute list. The system declaration file is always
a lisp-mode file and is compiled into the user package.

The name of the system declaration file does not require an exact format, since you
explicitly specify the pathname in the si:set-system-source-file form in the system
file. Typically, though, the logical pathname is given as
logical-host:logical-directory;system-name. The source file should have a canonical file
type of :lisp. When you call make-system the si:set-system-source-file form
loads the system declaration file, specifically the .newest version.

11.2 Loading System Definitions That Use Physical Pathnames

To load system definitions that use physical pathnames, specify the name of the
system and the path name of the system declaration source file in a
si:set-system-source-file form. Have your init file evaluate the form (or type the
form at a Lisp Listener) prior to calling make-system.

Note: You are urged to use logical pathnames to ensure that your system is site­
independent. A logical pathname has a single translation to a physical pathname.
To move your program to another host machine (one perhaps with a different
operating system) entails changing only the translation rather than editing all your
files to refer to the new file names.

220

Program Development Utilities February 1985

221

February 1985 Maintaining Large Programs

12. Making a System

Making a system means compiling or loading that system according to the
specifications in the defsystem form and to the user options supplied in the making
of the system. The relationship of make-system to the defsystem form which it
processes is quite complex. Please read the following section before making your
system: See the section "Interaction Between defsystem Transformations and
make-system", page 202.

The tools provided for making a system are the make-system function or the
Command Processor commands Load System or Compile System.

make-system name &rest keywords Function
make-system reads the system declaration file for system name and then
performs the transformations it specifies as well as any other instructions you
supply in the call to make-system. A call to make-system without any
options loads the existing binary files for the system name, as in

(make-system 'mysys)

If mysys is a patchable system, make-system loads the binary files of the
released version of the system, if one exists; otherwis~ it loads the binary files
of the latest version. make-system examines the system version-directory
file to determine which files are in which version of the system.

Supply one or more optional keyword arguments to alter the default behavior
of make-system. For example, to compile the source files that are newer
than their corresponding binary files, and increment the major version, type:

(make-system 'mysys :compile)

If mysys is a patchable system make-system also updates the system
version-directory file, making the just-compiled version the latest version of
the system.

By default make-system displays a message listing what transformations it is
going to perform on what files. It asks you for confirmation and then
performs the transformations. Prior to each transformation a message is
printed listing the transformation being performed, the file to which it is
being done, and the package. For example:

Load all twenty-six of them? (Y. N. or S)

If you answer S (meaning selective), you are asked for confirmation of each
individual transformation. Note: you can suppress these messages by
supplying the :noconfirm option in the make-system. This keyword
assumes an affirmative answer to all questions.

(make-system 'mysys :compile :noconfirm)

222

Program Development Utilities February 1985

If you run make-system on a system that is patchable and not already
loaded, make-system calls load-patches after loading the system.
load-patches is called with the same options as make-system; for example,
if make-system is specified with the :silent keyword, load-patches is also
silent.

make-system supports a number of keyword options, which modify its
behavior.

make-system Keywords

The make-system function recognizes many ~\.eywords, which can be
characterized as query keywords, operation keywords, keywords for patchable
systems, and miscellaneous keywords.

The query keywords ask you questions or suppress the asking of questions
during make-system. By default make-system prompts you about each
operation it intends to perform on a file and then reports each operation as it
does it.

:batch

:noconfirm

:nowarn

:selective

:silent

:batch allows a large compilation to be done unattended. It
acts like :noconfirm with regard to questions, turns off
MORE processing and sets inhibit-fdefine-warnings to t,
and saves the compiler warnings in an editor buffer and a
file (it asks you for the name).

:noconfirm suppresses all questions that you would
otherwise be asked, assuming an affirmative answer for
each question.

:nowarn suppresses questions requiring operator response.
Otherwise you must give permission to have straightforward
tasks (like reading files) performed.

:selective asks the user whether or not to perform each
transformation that appears to be needed for each file. .

:silent suppresses reporting of each transforma~on as it
occurs.

The operation keywords determine what operations make-system will
perform on the files in the system, subject to the constraints in your system
definition. By default make-system just loads the latest files.

: compile :compile compiles the newest versions of the source files if
and only if they are newer than the compiled code files. It
also loads the compiled code files. It increments the system
major version and sets the minor version to zero. For
patchable systems :compile updates the system version-

February 1985

:noload

:recompile

:reload

223

Maintaining Large Programs

directory file, making the just-compiled version the latest
version of the system.

:noload does not load any files except those required by
dependencies. :noload is used in conjunction with
:compile, so that you can compile files but not load them
unless it is necessary for compiling a subsequent file in the
system definition.

:recompile compiles and loads all files, regardless of
whether or not they need to be compiled or loaded. It
increments the system major version and sets the minor
version to zero. For patchable systems :recompile updates
the system version-directory file, making the just-compiled
version the latest version of the system. :recompile has
the effect of :compile and :reload. :recompile always
compiles the newest versions of each file.

:reload bypasses the specified conditions for performing a
transformation. Thus files are loaded even if they are not
newer than the installed version.

These miscellaneous keywords are not used frequently but are included here
for completeness.

:noop

:print-only

:noop is ignored. This is mainly useful for programs that
call make-system, so that such programs can include forms
like:

(make-system 'mysys (if compile-p ':compile ':noop»

:print-only displays the transformations that would be
performed; does not actually do any compiling or loading.

The following keywords are valid only for patchable systems, that is, those
defined with the :patchable option in the system definition.

: increment-patch
:increment-patch increments a patchable system's major
version without doing any compilation.

:no-increment-patch

:version

When given along with the :compile option,
:no-increment-patch disables the automatic incrementing
of the major system version that would otherwise take
place. Note that the :no-increment-patch keyword must
follow :compile in the make-system declaration.

:version loads specific versions of a patchable system.
Versions are described in the system version-directory file as
a number, a name, and/or a keyword - newest, released,
or latest.

224

Program Development Utilities February 1985

:version takes an argument, which you must supply as a
list. For example, to load version 34 of mysys, invoke:

(make-system 'mysys '(:version 34.»

Argument

:released

:latest

Meaning

Loads the major and minor system
designated by the system maintainer as
the released version. See the section
"Types of Patch Files", page 233.

When you do not supply the :version,
:compile, or :recompile keyword,
make-system always loads the released
system. If there is no released version,
then make-system loads the latest
version. It also loads patches for the
version of the system you specifY.

Example: To load the released version of
george, type:

(make-system 'george '(:version :released»
or the simpler form:

(make-system 'george)

Note: The system maintainer designates
a particular version of the system as the
released version by using the
:update-directory keyword to
make-system.

Loads the system designated by the
system developer as the latest version.
This version has the highest major and
minor version numbers. The most
recently compiled version of the system is
au tomatically assigned the designation
:latest in the system version-directory file.

Example: On Monday the system
developer compiles the most up-to-date
source files in the mailer system and
then loads each newly compiled file, as
follows:

(make-system 'mailer ':recompile)

make-system also automatically updates
the system version-directory file, marking
Monday's version of mailer as the latest
version.

February 1985

:newest

225

Maintaining Large Programs

On Tuesday the system developer wants
to load the version that was compiled the
day before; hence:

(make-system 'mailer '(:version :latest»

System developers typically use the :latest
keyword to load systems under
development.

Loads the most recently compiled version
of each file of a system. The distinction
between newest and latest is subtle; the
newest version differs from the latest
version when individual files in the system
have been compiled by hand. Note that
you cannot make or load patches for the
newest system.

Example: On Tuesday the system
developer loads the latest version of the
system alphabet, which contains files
A.lisp.I0, A.bin.I0, B.lisp.I0, B.bin.I0, and
so on, to Z.lisp.I0, Z.bin.I0. The developer
makes changes to several functions in
A.lisp.I0, compiles the file to A.bin.II, and
saves the source file, A.lisp.II.

On Wednesday the developer wants to test
the incremental changes to the system,
but, to be cautious, doesn't want to
destroy the latest system that was
compiled and loaded on Monday. To do
so, the developer uses the :newest
keyword to load a system consisting of the
most recently compiled versions of each of
the system's files: A.bin.II and the
remaining files, B.bin.I0 through Z.bin.I0.

(make-system 'alphabet '(:version :newest»

The latest version remains intact; and the
newest version is the most experimental
version of the system.

version-number Loads a particular major version number
of the system.

(make-system 'george '(:version 23.»

Note the decimal po in t after the version
number.

226

Program Development Utilities

version-name

February 1985

Loads the particular version of the system
known as :version-name in the system
version-directory file. This name is a user­
defined symbol. The system maintainer
must have previously assigned the version
name by using the :update-directory
keyword to make-system.

Example: The system developer plans to
demonstrate the frog system to a group
of prospective customers from Japan.
Aside from the regular debugged version,
there is a special version that works in
Japanese.

After assigning the version name
:japanese to this particular version of
frog, the developer can load it, as follows:

(make-system 'frog '(:version :japanese»

:update-directory
:update-directory updates the system version-directory file
for the currently loaded version of the system. Use
:update-directory to designate the currently loaded version
as the released version or to give it a name of your choice.
Once you have updated the system version-directory file,
you can use the :version option for make-system to load
that system.

:update-directory takes a keyword argument (like
:released) and assigns that keyword to the currently loaded
version of the system. Specified without an argument,
:update-directory enters the :latest keyword in the
system version-directory file. The argument, if any, must
be supplied as a list.

Example 1: The system developer wants to release the
latest version of mail, version #34, for general use. There
is currently no released version. The following form loads
the latest version of mail and designates it as the released
version.

(make-system 'mail '(:update-directory :released»

The developer could also have given this longer but
equivalent form:

(make-system 'mail '(:version 34.) '(:update-directory :released»

Example 2: The system developer plans to demonstrate the

February 1985

227

Maintaining Large Programs

frog system to a group of prospective customers from
Japan. Aside from the regular debugged version, there is a
special version that works in Japanese. The developer
decides to assign this special version a version-name of
:japanese. The system is already loaded, so the developer
invokes:

(make-system 'frog ':noload '(:update-directory :japanese»

To load this version in the future the developer must use
the version-name argument to the :version keyword, like
so: (make-system 'frog '(:version :japanese).

Example 3: The system maintainer wants to maintain a
version of the graphic-lisp system across incompatible
releases, such as Symbolics Release 4.5 and 5.0.

(make-system 'graphic-lisp '(:update-directory :rel-4-5»

Users can now run graphic-lisp under the older release by
invoking make-system with the version name of :rel-4-5.

12.1 Adding New Keywords to make-system

A user-defined keyword is a mechanism for communicating with a transformation.
Defining new keywords sets up variables that make-system transformations look at
during their execution. The effect is to alter the way the transformation works.

For example, during the loading of the system files the function fdefine is called.
fdefine in tum looks at the value the variable inhibit-fdefine-warmngs to
determine whether it should warn the user when a function spec is begin redefined
by a file different from the one that defined it originally. You decide to add a new
make-system keyword called :just-warn whose intent is to display the fdefine
warnings for functions being overwritten but not to query the user, as fdefine
normally does when the value of inhibit-fdefine-warnings is nil.

The first step is use the special form si:define-make-system-special-variable to
define a new variable. Because the variable is bound within the call to
make-system you can define new variables that are very similar to those already in
existence.

si:define-make-system-special-variable name form &optional Special Form
(defvar-p t)

Causes the variable name to be bound to form, which is evaluated at
make-system time, during the body of the call to make-system. This
allows you to define new variables similar to those that already exist. If you
specify defvar-p as (or defaulted to) t, name is defmed with defvar. It is not
given an initial value. If defvar-p is specified as nil, name belongs to some
other program and is not defvared here.

228

Program Development Utilities February 1985

In the following example, inhibit-fdefine-warnings is bound to itself within
the call to make-system.

(si:define-make-system-specia1-variab1e
inhibit-fdefine-warnings inhibit-fdefine-warnings nil)

make-system keywords are defined as functions on the si:make-system-keyword
property of the keyword. The functions have no arguments. The following example
sets the value of inhibit-fdefine-warnings to the new keyword :just-warn.

(defun (:just-warn si:make-system-keyword) ()
(setq inhibit-fdefine-warnings ':just-warn

batch-mode-p* t
query-type ':noconfirm»

make-system keywords can have effect either directly when called or by pushing a
form to be evaluated onto the list si:*make-system-forms-to-be-evaIed-after*,
si:*make-system-forms-to-be-evaIed-before*, or
si:*make-system-forms-to-be-evaIed-finaIly*. However, in general, the only
useful thing to do is to set some special variable defined by
si:define-make-system-speciaI-variable.

User-defined transformations can also have their behavior controlled by new special
variables, which can be set by new keywords. For example, if you want to get at
the list of transformations to be performed, the right way would be to set
si:*file-transformation-function* to a new function, which then might call
si:do-file-transformations with a possibly modified list. That is how the
:print-only keyword works.

Remember that when you execute make-system, it adds the loaded system to the
system version-directory file of patchable systems unless you specify certain keywords
that explicitly suppress this action. For example, :print-only is among these
keywords. Certain user-defined keywords - those that rebind
si:*file-transformation-function* and then recursively call make-system - must
also take into account this updating feature of make-system. The following code is
assumed to be in the si package.

(defun (:print-on1y make-systeM-keyword) ()
(no-update-directory) ;Suppresses updating
(setq *fi1e-transformation-function* 'print-fi1e-transformations»

Some of the variables bound by the predefined make-system keywords are:

si:*system-being-made* Variable
The internal data structure that represents the system being made.

si:*make-system-forms-to-be-evaIed-before* Variable
A list of forms that are evaluated before the transformations are performed.

229

February 1985 Maintaining Large Programs

si:*make-system-forms-to-be-evaled-after* Variable
A list of forms that are evaluated after the transformations have been
performed.

si:*make-system-forms-to-be-evaled-finally* Variable
A list of forms that are evaluated after the body of make-system has
completed. This differs from si:*make-system-forms-to-be-evaled-after* in
that these forms are evaluated outside of the "compiler context", which
sometimes makes a difference.

si:*query-type* Variable
Controls how questions are asked. Its normal value is :normal. :noconfirm
means no questions are asked, and :selective asks a question for each
individual file transformation.

si:*silent-p* Variable
If t, no messages are displayed.

si:*batch-mode-p* Variable
If t, : batch was specified.

si:*redo-all* Variable
If t, all transformations are performed, regardless of the condition functions.

si:*top-Ievel-transformations* Variable
A list of the names of transformations that will be performed, such as
<:fasload :readfile).

si:*file-transformation-function* Variable
The actual function that gets called with the list of transformations that
need to be performed. The default is si:do-file-transformations.

230

Program Development Utilities February 1985

231

February 1985 Maintaining Large Programs

13. Patch Facility

Software development is a process of incremental changes to many large programs by
many developers followed by the uniform distribution of these changes to any
number of users, including the same developers. (Note: the term large program
refers to one defined by defsystem. Only these programs can make use of the
patch facility.)

Briefly, developers fix or improve existing functional and other definitions (or write
new ones), and then, after thorough testing, decide to issue their changes to the
users at their site. They effect release in two ways: (1) they write new versions of

. the source files containing the edited or new definitions, and (2) they create patch
files, which contain only the new or changed definitions. Every time a patch is
created (written to disk), the patch facility automatically records the event in a sort
of "patch registry", noting the number of the patch, the system being patched, and
a brief summary of the patch i as described by the developer. Zmacs, the Lisp
Machine editor, provides special tools that make this process relatively easy and
disaster-free for the developer.

The important point is that it is the patch files - and not the newly written source
files - that allow the changes to be put into widespread use immediately. The
reason for this rests with the size of most software systems and the way they are
distributed. Because loading all the files in a large system is so time-consuming, the
system maintainer might compile and load the files just once into a Lisp world, and
then save that world in a FEP file. Other users can then save the file on their
individual machines. The problem is that since users do not load the system every
time they want to use it, they do not get all the latest changes. The patch facility
solves this problem, as it allows users to obtain all the incremental changes to a
system simply by loading its associated patch files.

Basically what occurs during the loading of patches is this: the current state of the
patch registry is compared to the registry as last loaded by the user. If patches
have been written since that time, just the new patches are loaded, and their
summary descriptions are displayed. At that point, the state of the given system in
the user's machine is presumably the same as in the developer's machine when the
patch was finished.

The Lisp Machine provides a number of convenient tools and several interfaces for
loading patches. For example, users can load patches by calling one of several Lisp
functions or alternatively via the Command Processor. Users also have the choice of
loading patches to virtual memory (which means they disappear when the machine is
booted) or of saving the patches to disk. (Of course, new patches can be made later,
and then these will have to be loaded to get the very latest version of a system.) In
the case where users load (make) a particular system whenever they want to use it,
the system-loading facility automatically loads all the patches for that system.

232

Program Development Utilities February 1985

Inevitably, a developer or system maintainer must stop accumulating patches and
recompile all the source files in a large program, for example, when a system is
changed in a far-reaching way that cannot be accomplished with a patch. Only at
this point do the source files become important to system maintenance and
distribution; in fact, after a complete recompilation, the old patch files are useless;
loading them might even break things.

To keep track of all the changing number of files in a large program, the patch
facility labels each version of a system with a two-part number. The two parts are
called the major version number and the minor version number. The minor version
number is increased every time a new patch is made; the patch is identified by the
major and minor version number together. The major version number is increased
when the program is completely recompiled, and at that time the minor version
number is reset to zero. A complete system version is identified by the major
version number, followed by a dot, followed by the minor version number.

The following typical scenario should clarify this scheme.

1. A new system is created; its initial version number is 1.0.

2. Then a patch file is created; the version of the program that results from
loading the first patch file into version 1.0 is called 1.1.

3. Then another patch file might be created, and loading that patch file into
system 1.1 creates version 1.2.

4. Then the entire system is recompiled, creating version 2.0 from scratch.

5. Now the two patch files are irrelevant, because they fix old software; the
changes that they reflect are integrated into system 2.0.

Note that the second patch file should only be loaded into system 1.1 in order to
create system 1.2; you should not load it into 1.0 or any other system besides 1.1. It
is important that all the patch files be loaded in the proper order, for two reasons.

• First, it is very useful that any system numbered 1.1 be exactly the same
software as any other system numbered 1.1, so that if somebody reports a bug
in version 1.1, it is clear just which software is being cited.

• Secondly, one patch might patch another patch; loading them in some other
order might have the wrong effect.

In addition to enabling users to have the most up-to-date programs available, the
patch facility performs another important function. Via the patch registry, it allows
a site to support multiple versions of the same system. Thus, general users can the
load stable, debugged version, while system developers can run the latest version of
the same system, editing and recompiling flIes, without forcing the general user to
deal with experimental changes. The detailed record keeping that this capability
requires is maintained in the registry's system version-directory file, which is created
automatically and updated whenever a system is compiled.

233

February 1985 Maintaining Large Programs

The patch registry also keeps track of all the individual patch files that exist,
remembering which version each one creates. A separate numbered sequence of
patch files exists for each major version of each system, for example, lmfs-37-15.lisp,
Imfs-37-16.lisp, and so forth. All patches for each major version are stored in their
own subdirectory in the file system.

In addition to the patch fues themselves, the patch-directory file keeps track of what
minor versions exist for a major version, and what the last major version of a system
is. For example, Imfs-37.patch-dir contains a listing of the patches made for major
version 37 and a comment on why each patch was made. These files and how to
make them are described in this section.

In order to use the patch facility, you must define your system with defsystem and
declare it as patchable with the :patchable option. When you load your system, it
is added to the list of all systems present in the world. Whenever you compile your
patchable system, its major version in the file system is incremented; thus a major
version is associated with a set of compiled code files.

The patch facility keeps track of which version of each patchable system is present,
and where the data about that system reside in the fue system. This information
can be used to update the Lisp world automatically to the latest versions of all the
systems it contains. Once a system is present, you can ask for the latest patches to
be loaded, ask which patches are already loaded, and add new patches. You can also
load patches or whole new systems and then save the entire Lisp environment away
in a FEP file. See the function load-and-save-patches, page 246.

13.1 Types of Patch Files

The patch facility maintains several different types of files in the directory associated
with your system:

• The system version-directory file

• The patch directory file

• Individual patch files

The system version-directory file and the patch directory file constitute a sort of
"patch registry", recording the number of the patch, the name and version of the
system being patched, and a brief description of the patch.

13.1.1 System Version-directory File

System version information for each patchable system is recorded in a database called
the system version-directory file. This file associates source and object versions of
system files with major versions of the system itself. make-system uses this file to
determine which versions of the system files to load for the major version you

234

Program)evelopment Utilities February 1985

specified when you called make-system. Whenever you run make-system with the
:compiIe, :recompiIe, or :update-directory keywords, make-system updates the
system version-directory file (or creates it), recording the name, type, and file version
number of all files in each version of the system. In addition, it describes the status
of the system by associating particular system versions with status keywords, for
example, :released or :latest.

The major benefit of this detailed record keeping is that your site can support
multiple versions of the same system. General users and system developers can load
specific versions of systems and specific versions of system files, even when newer
and possibly incompatible versions have been made. Some examples:

• System developers can work on the latest versions of systems, editing and
recompiling some files, without forcing the average user to contend with new
and experimental changes to the system.

• General users, on the other hand, can load the stable, released versions.

• Symbolics can more easily distribute versions of the system other than the
newest version.

• You can use old versions of systems after recompiled versions have been made
for the latest system software.

In addition, you can load a system in several different ways:
• by version number
• by version name
• by designation as released, latest, or newest

To load a specific system, use the :version option for make-system.

The released version is the fully debugged version intended for general use. To
designate a system as the released version use either set-system-status (to make
the change in memory only) or make-system with the :update-directory option
to make the change in the system version-directory file.

The latest version is the most recently compiled version of the system. The system
version-directory file is automatically updated whenever you compile or recompile the
system; make-system assigns the :latest keyword to this system.

The newest version of a system consists of the most recently compiled version of
each file of a system. The newest version differs from the latest version when
individual files have been compiled by hand. The newest version of a system has no
version number . Note that you cannot define patches for the newest system.

13.1.2 Patch Directory File

The patch directory file keeps a listing of the patches (minor versions) that exist for
a major version. Each major version of the system has its own patch directory file,
which lists the minor version number, any comments about the patch, and the
patch author. make-system creates a new patch directory flle automatically when
you recompile a system or use the :increment-patch option.

235

February 1985 Maintaining Large Programs

13.1.3 Individual Patch Files

Each minor version of the system has a patch source file and a corresponding
compiled code file. The individual patch files for a major system version reside in the
subdirectory for that major version. (The patch directory file also resides in this
subdirectory.) Each patch file is uniquely identified by the major and minor version
numbers of the system. For example, Imfs-37-3.lisp would name of the patch source
file for major version #37 and minor version #3 of lmfs.

13.1.4 Organization of Patch Files

The system version-directory file, the patch directory file, and the individual patch
files are created and maintained automatically, but you will need to know where the
patch facility stores these patch files and how to find them on your host.

The patch facility knows which directories to associate with your system by looking
at how you specified the :patchable option and the :pathname-default option in
your system declaration. For example, the following defsystem declaration will
cause the patches to be stored in the logical directory "george: patch;" rather than in
the directory that holds the other files of the system, the pathname default.

(:pathname-default "george: george;")
(:patchable "george: patch;~)

When you do not supply the directory argument to :patchable, then the patches
are stored in the directory specified by :pathname-default; in the following example
this is the logical directory "george: george".

(:pathname-default "george: george;")
(:patchable)

The source and compiled code patch files for a major system version are kept in
their own subdirectory. The patch directory file for a major version resides in the
same subdirectory as the patch files. The system version-directory file, which
describes all versions of a system, resides in the immediately superior directory.

Patch files are organized in a tree-like structure, as illustrated in the following
diagram. Assume that the patches for george are stored in the logical directory
"george: patch;", which translates into "q:>sys>george>patch>".

236

Program Development Utilities

Q

I
sys

I
george

I

February 1985

patch ___ system version-directory file
I \ for all versions of george

I
subdirectory for 1st
version of george

\
subdirectory for nth
vers i on of george. __ _

I I I I
patch directory
file for 1st
version of
george

patch patch
file file
11 In

patch directory patch patch
file for nth file file
version of 11 In
george

13.1.5 Names of Patch Files

The patch facility chooses names for your patch files based on your system definition
and on the host.

The host determines the file type and the number of characters in the file name.
For example, VMS, UNIX 4.1, and ITS use a computer-generated contraction of the
file name. A system version-directory file name like charlie.system-dir on LMFS
would be CHARLI (SDIR) on ITS. Similarly, a patch directory file name like
charlie-1.patch-dir on LMS would be CHA001 (PDIR) on ITS.

The following tables show the physical file types of the system version-directory file
and the patch directory file for various hosts.

Host

TOPS-20
UNIX 4.1
UNIX 4.2
VMS
ITS
LMFS
Multics

Host

TOPS-20
UNIX 4.1
UNIX 4.2
VMS
ITS
LMFS
Multics

File type of the system version-directory file

SYSTEM-DIR
sd
system-dir (also sd for compatibility)
SPD
(SDIR)
system-dir (also patch-dir or directory for compatibility)
system-dir

File type of the patch directory file

PATCH-DIR
pd
patch-dir (also pd for compatibility)
VPD
(PDIR)
patch-dir (also directory for compatibility)
patch-dir

237

February 1985 Maintaining Large Programs

The format of patch file names varies with the type of file.

• The format of the system version-directory file is some name chosen by the
patch facility followed by the appropriate file type and file version number. For
example, the system version-directory file on LMFS for the george system
might be:

q:>sys>george>patch>george.system-dir.1

• The format of the patch directory file name is some name followed by the
major version number and the appropriate file type and file version number.
For example, the patch directory file on LMFS for major version #38 of
george might be:

q:>sys>george>patch>george-38>george-38.patch-dir.44

Note that the file resides in a subdirectory of the same name.

• The format of the individual patch file is some name chosen by the patch
facility followed by the major version number, the minor version number, and
the appropriate file type and file version number. For example, source patch
file #1 for major version #38 of george might be:

q:>sys>george>patch>george-38>george-38-1.1isp

Because the translation rules for generating patch file pathnames are fairly
complicated, they are not given here. Instead use the si:patch-system-pathname
function to determine the names of your patch files.

si:patch-system-pathname system type &rest args Function
Returns the logical pathname of a patch file. system is the name of the
system. type is :system-directory, :version-directory, or :patch-file.
Specify also any additional args required by the type.

Type Description

:system-directory
Returns the logical pathname of the system-version directory file
for the given system, for example:

(si:patch-system-pathname "LHFS"
:system-directory)

The form returns #<LOGICAL-PATHNAHE HSVS: LHFS: PATCH:
LHFS.SVSTEH-DIR.NEWEST"~

:version-directory
Supplied with a major-version-number argument, it returns the
logical pathname of that patch directory file for the given system,
for example:

(si:patch-system-pathname "LHFS"
:version-directory 51.)

238

Program Development Utilities February 1985

The form returns #<LOGICAL-PATHNAHE "SYS: LHFS; PATCH;
LHFS-51.PATCH-OIR.NEWESTH).

:patch-file Supplied with the major-version-number, minor-version-number,
and canonical-type arguments, it returns the logical pathname of
the patch file.

(si:patch-system-pathname "LHFSH

:patch-file 51. 2.
:lisp)

The form returns #<LOGICAL-PATHNAHE "SYS: LHFS; PATCH;
LHFS-51-2.LISP.NEWEST"~

To find the physical pathname translation of any of these, send the returned
value the :translated-pathname message. For example, send the
:translated-pathname message to the returned value of
(si :patch-system-pathname "LHFS" :system-directory). The form would
return #<LHFS-PATHNAHE "q: >sys> lmfs>patch> lmfs .system-dir">.

13.2 Making Patches

During a typical maintenance session you might make several changes to existing
definitions or write new ones. Rather than recompiling the entire system every time
you change a source file, you can copy only the new or revised code into a patch file
and write the file ("finish" the patch). Whenever you finish a patch, the patch
facility automatically compiles the file and records the event in a "patch registry" for
the system, noting the number of the patch, the system being patch, and a brief
user-supplied description. As soon as a user loads the patch file (after the system is
loaded), the state of the given system in his or her machine is presumably the same
as in the developer's machine when the patclt was finished.

The patch facility allows you to have several patches in progress at once. Thus you
can patch several different systems or several different minor versions of the same
system during one work session. The patch facility manages this potentially
dangerous situation in the following way. Every time you start a patch, a number
and a place in the patch registry is reserved for the patch in production. The patch
is marked in-progress. When the patch is finished, the entry is completed and the
in-progress mark removed. If you decide to abort the patch, the registry entry is
automatically deleted.

The ability to have more than patch in-progress to more than one system makes it
imperative that you keep track of the state of your various patches. If a patch is
left unfinished (unwritten), the load-patches function will load neither the in­
progress patch or any subsequent finished patches.

The patch facility considers patches to be active or inactive and in one of the

239

February 1985 Maintaining Large Programs

following states: initial, in-progress, aborted, or finished. View Patches (rra-X) displays
the state of all patches started in this work session. If more than one patch is in
progress, one of them is known as the current patch. The commands that add
patches, like Add Patch (rra-X), add only to the patch considered by the patch facility
to be the current patch. The command Select Patch (M-X) displays a menu of active
patches and allows you to make another patch the current one.

In general you should adhere to the following steps in making a patch. It is
assumed that your system is patchable; that is, the :patchable option appears in
the system declaration.

1. You must load (via make-system) the major version of the system that you
want to patch.

2. Read in the source files you want to edit into a Zmacs buffer. Make all
changes and test them thoroughly. Write the source file.

3. Use the appropriate Zmacs commands to make your patch. Begin the patch,
using Start Patch (M-X).

4. Add the changed code to the patch buffer by using Add Patch (M-X), Add
Patch Changed Definitions of Buffer (M-X), or Add Patch Changed Definitions
(M-X).

5. Finish the patch, using Finish Patch (M-X), or abort the patch, using Abort
Patch (M-X).

Commands provided for initiating a patch are Start Patch (M-X), Start Private Patch
(M-X), and Add Patch (M-X).

13.2.1 Start Patch (m-X)

Starts a new patch, prompting you for tIle name of the system to be patched; it
must be a system currently loaded. It assigns a new minor version number for that
particular system by writing a new version of the patch directory file with an entry
for that minor version number. The patch is marked as in-progress. It starts
constructing the patch file in an editor buffer, but does not select the buffer.

While you are making your patch file, the minor version number that has been
allocated for you is reserved so that nobody else can use it. Thus, if two people are
patching the same system at the same time, they cannot be assigned the same
minor version number.

The command does not actually move any definitions into the patch file. You must
explicitly do so with Add Patch Changed Definitions of Buffer (M-X), Add Patch
Changed Definitions (M-X), or Add Patch (M-X).

The patch facility permits you to start another patch before finishing the current
one. However, if your new patch is to the same system, the patch facility warns

240

Program Development Utilities February 1985

you that you already have a patch in progress and allows you to take one of four
actions:

• Abort the in-progress patch and start a new patch.
• Finish the in-progress patch and start a new patch.
• Proceed with the second patch (initial patch) for this system and leave the in­

progress patch intact.
• Use the existing buffer and do not start a new patch.

13.2.2 Start Private Patch (m-X)

Although similar to Start Patch (Ill-X), Start Private Patch (Ill-X) does not have any
relationship to systems, major and minor version numbers, and official patch
directories. Rather it allows you to make a private patch file that you can load, test,
and share with other users before you install a numbered patch that is automatically
available to all users.

Instead of prompting for a system name, the command prompts for a file name.
Start Private Patch does not actually move any definitions into the patch file. Use
Add Patch Changed Definitions of Buffer (Ill-X), Add Patch Changed Definitions
(M-X), or Add Patch (M-X) to insert the code. Finishing the patch (using Finish
Patch (M-X» writes it out to the specified file.

Note: Use the Load File command or Load File (Ill-X) to load a private patch; the
Load Patches command and the load-patches function do not load private patches.

13.2.3 Add Patch (m-X)

Starts a new patch if none is underway, prompts you for a system name, and
inserts the region or current definition into the patch buffer. If a patch was in
progress, Add Patch (Ill-X) just adds the region or current definition to the current
patch file.

If you mistakenly use the command on code that does not work, select the buffer
containing the patch file and delete it. Then later you can use Add Patch (Ill-X) on
the corrected version. For each patch you add, it queries for a patch comment,
which it then inserts in the patch file. Just pressing END means "no comment".

Add Patch (Ill-X), Add Patch Changed Definitions (Ill-X), or Add Patch Changed
Definitions of Buffer (Ill-X) insert code into the patch file. These commands add only
to the current patch buffer and warn you if you try to add code from one system to
a patch for another. '

241

February 1985 Maintaining Large Programs

13.2.4 Add Patch Changed Definitions of Buffer (m- x)

Add Patch Changed Definitions of Buffer (M-X) selects each definition that was
changed in the buffer and asks you whether or not you want the definition patched.

For each definition, you can respond as follows:

Response
y

N

P

Action

Patches the definition.

Skips the definition.

Patches the definition and any additional modified definitions in the
same buffer without asking any more questions.

A definition needs to be patched if it has been changed since it was last patched or
if it has not been patched since the file was read into the buffer.

For each patch you add, it queries for a patch comment, which it then inserts in the
patch file. Just pressing END means "no comment".

13.2.5 Add Patch Changed Definitions (m- x)

Add Patch Changed Definitions (M-X) selects a buffer in which definitions were
changed and asks whether or not you want to patch the changed definitions.
Answering N skips the buffer and proceeds to the next buffer, if any. Answering Y
selects each definition that has changed in that buffer and asks you whether or not
you want the definition patched. For each definition, you can respond as follows:

Response

Y

N

P

Action

Patches the definition.

Skips the definition.

Patches the definition and any additional modified definitions in the
same buffer without asking any more questions; when done, it
proceeds to the next buffer.

If there are more buffers containing definitions to be patched, it asks questions again
when it gets to the next buffer.

A definition needs to be patched if it has been changed since it was last patched or
if it has not been patched since the file was read into the buffer.

For each patch you add, it queries for a patch comment, which it then inserts in the
patch file. Just pressing END means "no comment".

When making multiple patches during one work session use the Select Patch and
View Patches commands to keep track of patches.

242

Program Development Utilities February 1985

13.2.6 Select Patch (m- x)

When you are making more than one patch during a work session, Select Patch
(M->O allows you to choose a different patch as the current patch from a menu of
active patches. The patching commands <like Add Patch and Add Patch Changed
Definitions of Buffer) insert definitions into the patch file that you have selected as
the current patch. To insert patch definitions into another buffer, use Select Patch
to choose that buffer as the current patch.

13.2.7 View Patches (m-X)

View Patches (M-X) displays the state of all patches started in this session. Patches
are either active or inactive and can be in one of the following states: initial, in­
progress, aborted, or finished. Inactive patches are in an aborted or finished state.
Active patches are in an initial or in-progress state. Initial means that the patch
buffer has been initialized but as yet no definitions have been added to the buffer.
In-progress means that the patch buffer has been initialized and definitions have
been added to the buffer.

View Patches groups the active and inactive patches and identifies the current patch.

After making and testing all of your patches, use the Finish Patch command to
install the patch in the system.

13.2.8 Finish Patch (m-X)

Finish Patch (M-X) installs the patch file so that other users can load it. This
command saves and compiles the patch file (patches are always compiled). If the
compilation produces compiler warnings, the command asks whether or not you want
to finish the patch anyway. If you do, or if no warnings are produced, a new
version of the patch directory file is written. The in-progress mark is removed from
the entry in the patch registry.

The command allows you to edit the patch comments, which are written to the
patch directory file. (load-patches and print-system-modifications print these
comments.) It then asks you whether you want to send mail about the patch. If
you say "yes", it opens a mail buffer and inserts initial contents, including the name
of the patch file and your patch comment.

Note: By default the Finish Patch command queries you about sending mail. You
can alter this behavior by changing the value of the variable
zwei:*send-mail-about-patch*. Its valid values are :ask, the default value, which
queries the user; t, which opens a Zmacs mail buffer without querying; and nil,
which takes no action regarding the sending of patch mail.

243

February 1985 Maintaining Large Programs

Sometimes you start making a patch file and for a variety of reasons do not finish it
- for example, you decide to abort the patch, you neeC to end your work session at
this machine, or your machine crashes. In each of these situations it is of the
utmost importance that you leave the patch directory file in a clean state; that is,
either go back and finish the patch (as soon as possible!) or deallocate the patch
number reserved to you. Failure to do so has unfortunate consequences: users at
your site will not be able to load patches.

In your machine has crashed, use Resume Patch (M-X) to reclaim access to the patch
number previously assigned to you. You can continue with the patch (assuming you
saved the source files just prior to the crash) or use Abort Patch (M-X) to deallocate
the patch number. Begin the patch again if you wish. If you simply decide to
abandon the patch file, then just use Abort Patch. If you must boot your machine
before finishing the patch, then save the patch buffer and as soon as possible use
Resume Patch to read in the relevant patch file; finish the patch or abort it, as you
wish.

13.2.9 Abort Patch (m- x)

Abort Patch (M-X) deallocates the minor version number that was assigned by the
Start Patch or Add Patch commands. It tells Zmacs that you are no longer
interested in making the current patch and offers to kill the patch buffer. The next
time you do Add Patch (M-X), Zmacs starts a new patch instead of appending to the
one in progress.

13.2.10 Resume Patch (m-X)

Resume Patch (M-X) allows you to return to a patch that you were not able to finish
in the same boot session in which you started it; for example, your machine might
have crashed or you had to boot your machine suddenly. It reads in the relevant
patch file if it was previously saved; otherwise it just reclaims your access to the
minor version number allocated to you when you started the patch. Abort or finish
the patch.

Under certain circumstances you might find it necessary to recompile and reload a
patch file.

13.2.11 Recompile Patch (m-X)

Recompile Patch (M-X) recompiles an existing patch file. This command is useful
when, for example, an existing patch needs to be edited or a compiled patch file
becomes damaged in some way. Never recompile a patch manually or in any other
way except by using the Recompile Patch command. This command ensures that
source and object files are stored where the patch system can find them.

244

Program Development Utilities February 1985

Use Recompile Patch with caution! Recompiling a patch that has already been
loaded by other users can cause divergent world loads.

13.2.12 Reload Patch (m-X)

Reload Patch (M-X) reloads an existing patch file. This command makes it easy to
reload a patch file without having to know its pathname.

You might want to have your herald announce private patches that you make.
note-private-patch adds a private patch to the database in your world and includes
the name of the patch in the herald.

note-private-patch string Function
Adds a private patch to the database in your world. note-private-patch
takes a string argument. For example, the following adds the private patch
called patch.lisp:

(note-private-patch "s:>smiller>patch.lisp")

Subsequent displays of your herald show the inclusion of that patch in your
world.

You create private patches using the Start Private Patch (M-X) command and
then the standard patch commands for adding to and finishing the patch.
Use the Load File command or Load File (M-X) to load a private patch; the
load patches command and the load-patches function do not load private
patches.

13.3 Loading Patches

When you command the loading of patches for a software system the current state
of the patch registry is compared to the registry as last loaded by the user. If
patches have been written since that time, just the new patches are loaded, and
their summary descriptions are displayed. As each patch is loaded, the state of the
given system in your machine to the same level as in the developer's machine when
he or she finished that particular patch.

The patch registry manages the appropriate loading of patches for a particular
system. New patches for a system (since the last loading, if any) are installed until
no more remain or until an in-progress patch is encountered. In this last case,
loading is halted before the patch in-progress is installed, because the consistency of
patches that might follow cannot be guaranteed. The system displays a message
indicating the presence of unfinished patches.

The Lisp Machine provides a number of convenient tools and several interfaces for

245

February 1985 Maintaining Large Programs

loading patches. For example, you can load patches by calling one of several Lisp
functions - load-patches or load-and-save-patches - or alternatively, by issuing
the Load Patches command in the Command Processor. The effect of these tools
differs: load-patches and its Command Processor equivalent loads patches to virtual
memory, which means they disappear when the machine is booted;
load-and-save-patches writes the patches to disk. (Of course, new patches can be
made later, and then these will have to be loaded to get the very latest version of a
system.) When you call make-system to load a particular system, the system­
loading facility automatically loads all the patches for that system, using the same
options specified in the call to make-system.

load-patches &rest options Function
Brings the current world up to the latest minor version of whichever major
version it is, for all systems present, or for certain specified systems. If there
are any patches available, load-patches offers to read them. load-patches
also loads the translations file (sys:site:logical-host.translations file) if it has
changed. load-patches returns t if any patches were loaded, and nil
otherwise.

Note: When you do a make-system of a patchable system, make-system
calls load-patches after loading the system. If make-system is silent,
load-patches is silent; if make-system asks for confirmation, load-patchen
asks for confirmation.

With no arguments, load-patches assumes you want to update all the
systems present in this world and asks you whether you want to load each
patch (equivalent to using the :selective option).

options to load-patches, if supplied, can be one or more keywords or system
names. The following options are accepted:

system-name

:systems list

:verbose

:selective

system-name is the name of a system (symbol or string) to
be brought up to date.

list is a list of names of systems (symbols or strings) to be
brought up to date. If this option is not specified, all
systems are processed.

:verbose prints an explanation of what is being done.
This is the default.

For each patch :selective displays the patch comment and
then asks you whether or not to load the patches. The
choices are Y, N, P, or H: yes, no, proceed, or highest.
Answering P turns off selective mode for any remaining
patches to the current system. H means highest patch
number to load. If you do not specify a limit, it loads all
patches from the present level for a given system.

246

Program Development Utilities February 1985

:noselective :noselective turns off :selective.

:silent :silent turns off both :selective and :verbose. In :silent
mode all necessary patches are loaded without printing
anything and without querying the user.

:nowarn :nowarn suppresses any warnings generated while a patch
file is being loaded, such as that produced when a symbol
belonging to one package is being defined by a file
belonging to a different package. It also suppresses the
subsequent query to the user. :nowarn does not imply
:noselective.

load-and-save-patches &rest keyword-args Function
load-and-save-patches first disables network services and MORE processing
and then loads any patches that need to be loaded and any new versions of
the site files, calling load-patches with arguments of :noselective and any
other keywords provided as keyword-args. Valid keyword-args are:

:verbose

:selective

:silent

:nowarn

:verbose prints an explanation of what is being done.
This is the default.

For each patch :selective displays the patch comment and
then asks you whether or not to load the patches. The
choices are Y, N, P, or H: yes, no, proceed, or highest.
Answering P turns off selective mode for any remaining
patches to the current system. H means highest patch
number to load. If you do not specify a limit, it loads all
patches from the present level for a given system.

:silent turns off both :selective and :verbose. In :silent
mode all necessary patches are loaded without printing
anything and without querying the user.

:nowarn suppresses any warnings generated while a patch
file is being loaded, such as that produced when a symbol
belonging to one package is being defined by a file
belonging to a different package. It also suppresses the
subsequent query to the user. :nowarn does not imply
:noselective.

If no one is logged in, it logs in anonymously. If any patches have been
loaded, load-and-save-patches prompts for the name of a FEP file in which
to save the world load and then calls disk-save to actually save the resulting
world load. If no patches have been loaded, it restores network services to
their state before load-and-save-patches was called, and logs out if it has
logged in anonymously.

Call1oad-and-save-patches before you log in in order to avoid putting the
contents of your init file into the saved world load.

247

February 1985 Maintaining Large Programs

Note that loading files asynchronously - particularly patch files - is neither
guaranteed to work nor an efficient use of resources. The main process and the
background process would compete for resources, and you would lose a lot of time to
paging and the scheduler. Furthermore, you cannot expect the correct results from
loading patch files in a background process for the following reasons:

• load-patches can reset and rebuild the site information.

• When a foreground bug occurs while patches are loading, you cannot determine
what system the bug occurred in.

• When you are using a subsystem in the foreground while it is being patched in
the backgrounds. unexpected problems could arise.

• The file could be doing something that maps over all pathnames, expecting
that pathnames would not change while it was running.

• defflavor has no locking at load time. Thus, the flavor data structures can
be damaged if two processes evaluate deffiavor simultaneously.

248

Program Development Utilities February 1985

249

February 1985 Maintaining Large Programs

14. Getting Information About a System

describe-system is a useful general function for finding information about a
system, patchable or nonpatchable.

describe-system system-name &key (show-files t) Function
(show-transformations t)

Displays useful information about the system named system-name. This
includes the name of the system source file, the system package default if
any, and component systems. For a patchable system, describe-system
displays the system version and status, a typical patch file name, the sites
maintaining the system, and, if the user wants, a listing of patches.

If :show-files is t (the default), it displays the history of the files in the
system. Other possible values are nil (do not show file history) and :ask
(ask the user).

If :show-transformatioDB is t (the default), it displays the transformations
required to make the system. Other possible values are nil (do not display
transformations) and :ask (ask the user).

When a Lisp Machine is booted, it displays a line of information telling you what
systems are present, and which version of each system is loaded. This information
is returned by the function si:system-version-info. It is followed by a text string
containing any additional information that was specified by whoever created the
current world load. See the function disk-save in Installation and Site Operations.

si:system-version-info &optional (brief-p nil) Function
Returns a string giving information about which systems and what versions
of the systems are loaded into the machine (for systems that differ from the
released versions) and what microcode version is running. A typical string for
it to produce is:

"System 242.264. Zmail 83.42. LHFS 37.31. Vision 10.23. Tape 21.9.
microcode THC5-HIC 264. FEP 17"

If brief-p is t, it uses short names, suppresses the microcode version, any
systems that should not appear in the disk label comment, the name System,
and the commas:

"242.264 Vis 10.23"

si:get-system-version &optional (system 'System" Function
Returns three values. The first two are the major and minor version
numbers of the version of system currently loaded into the machine. The
third is the status of the system, as a keyword symbol: :experimentaI,
:released, : obsolete, or :broken. system defaults to System. This returns
nil if that system is not present at all.

250

Program Development Utilities February 1985

Releases have numbers and status associated with them, just as systems do.
Symbolics staff assign the release number.

si:get-release-version Function
si:get-release-version returns three values, the release numbers and the
status of the current world load:

Major version number
Patch version number or string describing minor patch level
Status of the world load as a keyword symbol:

:experimental
: released
: obsolete
:broken
nil (when status cannot be determined)

print-system-modifications &rest system-names Function
With no arguments, print-system-modifications lists all the systems
present in this world and, for each system, all the patches that have been
loaded into this world. For each patch it shows the major version number
(which will always be the same since a world can only contain one major
version), the minor version number, and an explanation of what the patch
does, as entered by the person who made the patch.

If print-system-modifications is called with arguments, only the
modifications to system-names are listed.

si:patch-Ioaded-p major-version minor-version &optional (system Function
"System")

A predicate that tells whether the loaded version of system is past (or at) the
specified patch level. Returns t if:

• the major version loaded is major-version and the minor version loaded
is greater than or equal to minor-version

• the major version loaded is greater than major-version
Otherwise, the function returns nil.

251

February 1985 Maintaining Large Programs

15. Functions That Operate on a System

15.1 Changing the Status of a Patchable System

The major version of a patchable system has a status associated with it. This status
announces the state, or condition, of the system software - for example, a system
can be released, experimental, obsolete, or broken. The status is displayed with the
system version, in places such as the system print herald and the comment
properties in FEP files. Use set-system-status to change the status of a system.

set-system-status system new-status &optional major-version Function
only-update-on-disk-p

Changes the status of a patchable system as cached in memory. (Note: To
record a change in system status in the system version-directory file, call
make-system with the :update-directory keyword.) Call
set-system-status manually; you should not place the form in patch files.

system

new-status

major-version

The name of the system.

One of these defined keywords:

:experimental The system has been built but has not
yet been fully debugged and released to
users. This is the default status when
a new major version is created, unless it
is overridden with the :initial-status
option for defsystem.

:released

:obsolete

:broken

The system is released for general use.
This status produces no extra text in
the print herald and the comment
properties in FEP files.

The system is no longer supported.

The system was thought incorrectly to
have been debugged and was previously
assigned :released status.

The number of the major version to be changed; if
un supplied it defaults to the version currently loaded into
the Lisp world.

only-update-on-disk-p
If its value is t, the patch directory file is updated to show
new-status, but the running Lisp environment is not
modified.

252

Program Development Utilities February 1985

Occasionally, you might want to operate on every file in a defmed system. Use
si:map-system-files and si:set-system-file-properties for this purpose.

si:map-system-files system version function &rest args Function
Maps a function over each file in the specified version of the system. The
following example deletes every file in version 12 of the mailer system.

(si:map-system-files 'mailer 12. I'deletef)

si:set-system-file-properties system version &rest properties Function
Sets the properties of each file in the specified version of the system. The set
of legal properties depends on the file system.

Example: Your directory retains only the two newest versions of each file
and discards the rest, but you want to keep every version number of each file
in the mailer system, major version 10.

(si:set-system-file-properties 'mailer 10. :dont-reap t :dont-delete t)

253

February 1985 Debugger

PART III.

Debugger

254

Program Development Utilities February 1985

255

February 1985 Debugger

16. Entering the Debugger

When an error condition is signalled and no handlers decide to handle the error, an
interactive Debugger is entered to allow you to look around and see what went
wrong and to help you continue the program or abort it. This section describes how
to use the Debugger and the various debugging facilities.

16.1 Entering the Debugger by Causing an Error

The Debugger is invoked automatically when errors arise during program execution
or when you explicitly cause an error, for example, by typing a nonsense symbol
name, such as ahsdgf, at the Lisp read-eval-print loop.

16.1.1 Error Display

Errors are signalled by the microcode and by Lisp programs (by using ferror or
related functions). Here is an example of an error:

foo

»Trap: The variable FOO is unbound.

SI:*EVAL:
Arg 0 (FORH): FOO

s-A.
s-B.
s-C:
s-O,
~

RESUHE:
m-C:

ABORT:

Supply a value to use this time as the vaue of FOO
Supply a value to store permanently as the value of Faa
Retry the SVHEVAL instruction
Return to Lisp Top Level in Lisp Listener 1

> > indicates entry to the Debugger. The word immediately following > > shows what
caused you to enter the Debugger; most commonly you see Trap, Error, or Break.

Trap indicates a microcode error.
Error indicates a software error.
Break indicates entry by keystroke or the dbg function.

The message that follows describes the error in English, in this example, an
unbound variable. The next two lines in the example show the stack frame in
which the error occurred - the function that was being called and the current
value(s) of its argument(s).

The right-facing arrow (~) indicates that the Debugger is waiting for a command.
Multiple arrow prompts signal recursive invocations of the Debugger.

256

Program Development Utilities February 1985

16.1.1.1 Debugger Proceed and Restart Options

The Debugger provides options for proceeding from the error or restarting from some
prior point. When the Debugger is entered, all proceed types, special commands, or
restart handlers available in the error context are assigned to keystrokes with the
SUPER modifier, starting with s-A, s-B, and so on, from the most recently established
(innermost) to the oldest (outermost). Also, the RESUME key is assigned to the
innermost proceed type (or restart handler if there are no proceed types), and the
ABORT key is assigned to the innermost restart handler. All these keystroke
assignments are displayed when you enter the Debugger or when you type the c-L
Debugger command. (See the section "Conditions" in Reference Guide to
Symbolics-Lisp.)

You can use one of these options or any of the Debugger commands. See the
section "How to Use the Debugger", page 259. For details on the Debugger
command keys: See the section "Special Keys" in Reference Guide to Symbolics-Lisp.

Optionally, you can request that backtrace information appear when you enter the
Debugger by setting the variable dbg:*show-backtrace* in your init file.

16.2 Entering the Debugger with m-SUSPEND

You can also enter the Debugger explicitly by pressing M-SUSPEND. Adding the
CONTROL modifier to this combination has the effect of saying "enter the Debugger
immediately". Thus, you can:

• Press M-SUSPEND while the currently running program or read-eval-print loop is
reading from the console.

• Press C-M-SUSPEND so that the currently running program enters the Debugger
whether or not it is reading from the console.

Note: Pressing the SUSPEND key without the META modifier or just pressing
c-SUSPEND enters a read-eval-print loop rather than the Debugger.

16.3 Entering the Debugger with the dbg Function

You can use the dbg function in your source code to help detect errors in your
programs.

• Insert a call to dbg (with no arguments) into your code and then recompile.

• Call dbg with an argument of process to force a process into the Debugger.

dbg &optional process Function
Forces process into the Debugger so that you can look at its current state.

257

February 1985 Debugger

dbg sets up a restart handler for c-2, ABORT, and RESUME that exits from the
dbg function back to the original process. The message for this restart
handler is "Allow process to continue". You can use c-T, c-R, c-M-R, and
other similar Debugger commands when you enter the Debugger via dbg.

• With no argument, it enters the Debugger as if an error had occurred
for the current process. It is not an error; in particular, errset and
catch-error do not handle it. You can include this form in program
source code as a means of entering the Debugger. This is useful for
breakpoints and causes a special compiler warning.

• With an argument of t (rather than a process, window, or stack group),
it finds a process that has sent an error notification.

Suppose you are running in process X and you use dbg on some process Y.
Process Y is forced into the Debugger, no matter what it is doing.
Technically, it is "interrupted", similar to how c-SUSPEND, c-ABORT and
C-M-SUSPEND work. Process Y starts running the Debugger, using the stream
debug-io. debug-io gets the same stream as was bound to tenninal-io in
Process X. At this time, Process X waits in a state called DBG until Process
Y leaves the Debugger, and so Process X does not contend for the stream.

For more information: See the special form break in User's Guide to Symbolics
Computers. See the section "Breakpoints" in Reference Guide to Symbolics-Lisp.

258

Program Development Utilities February 1985

259

February 1985 Debugger

17. How to Use the Debugger

Once inside the Debugger, you can give a wide variety of commands. With these
commands, you can see the arguments for the current stack frame, disassemble its
code, return a value for the stack frame, move up and down the stack, and enter
the editor to edit function definitions. Press the HELP key or the ? key to display a
brief help message or c-HELP for documentation on all of the Debugger commands.

This section describes how to give the commands, and then explains them in
approximate order of usefulness.

When the Debugger prompts you with .. , you can do one of the following:
• Type a Lisp expression
• Type a Debugger command
• Use the input editor to recall a previous Lisp expression

All Debugger commands are single characters, usually with the CONTROL or META

modifiers. The Debugger considers most keys used with a modifier (such as CONTROL
or SUPER) to be commands. Most unmodified keys begin a Lisp expression; however,
a few keys are commands even without a modifier.

The Debugger and the input editor use some of the same keys for commands. You
can enter the input editor at any time by pressing a key that is not a Debugger
command, for example, SPACE. Once there, you can type an input editor command
that is also a Debugger command.

17.1 Evaluating a Form in the Debugger

When you press a key that is not a command, the Debugger prompts with Eva 1 : ,

which means that it will evaluate any Lisp expression that you type. The Debugger
interprets the Lisp expression as a Lisp form and evaluates it in the context of the
function that got the error. That is, all bindings that were in effect at the time of
the error will be in effect when your form is evaluated, with certain exceptions
explained later in this section. The result of the evaluation is printed, and the
Debugger prompts again with an arrow.

If, during the typing of the form, you change your mind and want to get back to
the Debugger's command level, press ABORT or c-G; the Debugger responds with an
arrow prompt. In fact, you can press ABORT or c-G whenever the Debugger expects
typein in order to flush what you are typing and get back to command level.

If a nontrivial error occurs in the evaluation of the Lisp expression, you are thrown
into a second Debugger looking at the new error. The Debugger prompts with two
arrows (....) to show that you are inside two Debuggers. You can abort the

260

Program Development Utilities February 1985

computation and get back to the first Debugger by pressing the ABORT key.
However, if the error is trivial the abort is done automatically and the original error
message is reprinted.

Various Debugger commands ask for Lisp objects, such as an object to return or the
name of a catch-tag. Whenever it requests a Lisp object, it expects you to type in a
form; it will evaluate what you type in. This provides greater generality, since there
are objects to which you might want to refer that cannot be typed, such as arrays.
If the form you type is nontrivial (not just a constant form), the Debugger shows
you the result of the evaluation and asks you if it is what you intended. It expects
a V or N answer. (See the function y-or-n-p in Programming the User Interface.) If
you answer negatively it asks you for another form. To exit the command, just
press ABORT or c-G.

17.1.1 Rebound Variable Bindings During Evaluation

When the Debugger evaluates a form, the variable bindings at the point of error are
in effect with the following exceptions:

• tenninal-io is rebound to the stream the Debugger is using.
dbg:old-tenninal-io is bound to the value that tenninal-io had at the point
of error.

• standard-input and standard-output are rebound to be synonymous with
tenninal-io; their old bindings are saved in dbg:old-standard-input and
dbg:old-standard-output.

• query-io, debug-io, and error-output are rebound to be synonymous with
tenninal-io; their old bindings are not directly accessible.

• + and * are rebound to the Debugger's previous form and previous value.
When the Debugger is first entered, + is the last form typed, which is typically
the one that caused error, and * is the value of the previous form. ++, +++,
, *, -, and / / are treated in an analogous fashion. See the section "The
Lisp Top Level" in User's Guide to Symbolics Computers. When the Debugger
is exited, all of these variables are restored to their original values; the
interactions with the Debugger's read-eval-print loop do not affect the
interactions with the top-level Lisp read-eval-print loop.

• rubout-handler and read-preserve-delimiters are rebound to nil, in case
the error occurred while in the input editor or the reader.

• evalhook is rebound to nil, turning off the step facility if it had been in use
when the error occurred. See the section "evalhook", page 289.

• dbg:*bound-handlers* and dbg:*default-handlers* are rebound to nil,

261

February 1985 Debugger

preventing conditions signalled by the form the Debugger is evaluating from
reaching condition handlers in the program being debugged. This prevents you
from accidentally being thrown out of the Debugger.

• base, ibase, and package are checked to insure that they contain legal values.
If not, they are set to 8, 8, and si:pkg-user-package respectively.

Note that the variable bindings are those in effect at the point of error, not those of
the current frame being examined.

17.2 Exiting From the Debugger: Abort

The single most useful command is ABORT (or c-2), which exits from the Debugger
and throws out of the computation that got the error. Often you are not interested
in using the Debugger at all and just want to get back to the command level in the
program you are running; ABORT lets you do this in one character.

The ABORT command returns control to the most recently established restart handler,
usually a command or read-eval-print loop. Pressing ABORT multiple times throws you
back to successively older read-eval-print or command loops until top level is reached.
Pressing c-M-ABORT, on the other hand, always throws you to top level. (Note:

. c-M-ABORT is not a Debugger command but a system command, which is available
from every program.)

Pressing ABORT in the middle of typing a form to be evaluated by the Debugger
aborts that form and returns to the Debugger's command level, whereas pressing
ABORT as a Debugger command returns out of the Debugger and the erring program
to the previous command level.

17.3 Debugger Help

Documentation is provided by the HELP or ? command, which displays a very brief
explanation of the Debugger. The c-HELP command gives documentation for all of
the Debugger commands. If you type c-L or press REFRESH, the Debugger clears the
screen, redisplays the error message and the current stack frame, displays a brief
backtrace, displays the source file name of a function (when relevant), and lists the
special commands that apply to the particular error currently being handled and
gives a one-line explanation of each of them.

262

Program Development Utilities February 1985

17.4 Proceeding From the Error in the Debugger: Resume

Often you want to try to proceed from the error. To do this, use the RESUME
command. The exact way RESUME works depends on the kind of error that
happened. For some errors, there is no standard way to proceed, and RESUME just
tells you so and returns to the Debugger's command level. For the very common
"unbound variable" error, it requests that you supply the Lisp object that should be
used in place of the (nonexistent) value of the symbol. For unbound-variable or
undefined-function errors, you can also just type Lisp forms to set the variable or
define the function, and then press RESUME; execution proceeds after the Debugger
asks you to confirm that the new value is acceptable.

17.5 Examining the Current Stack Frame in the Debugger

The Debugger knows about a current stack frame and has several commands that
use it. The initially current stack frame is the one that signalled the error: either
the one that got the microcode-detected error, or the one that called ferror, error,
or a related function. When the Debugger starts up it shows you this frame in the
following format:

Faa
Arg 0 (X): 13
Arg 1 (V):

This means that foo was called with two arguments, whose names (in the Lisp
source code) are x and y. The current values of x and y are 13 and 1 respectively.
The Debugger shows the original arguments.

17.6 Examining Stack Frames with Debugger Backtrace Commands

The Debugger provides several commands to allow you to examine the Lisp control
stack and to make other frames current than the one that got the error. The
control stack (or regular pdl) keeps a record of all functions that are currently
active. If you call foo at Lisp's top level, and it calls bar, which in turn calls baz,
and baz gets an error, then a backtrace (a backwards trace of the stack) would show
all of this information.

Backtraces start at the current frame. Give an argument to specify how many
frames to show.

The Debugger has three backtrace commands:

• c-B, which displays a brief backtrace

263

February 1985 Debugger

• M-B, which displays a longer backtrace including the source file name of a
function (when relevant)

• c-M-B, which displays the longest backtrace

c-B displays the names of the functions on the stack, starting from the current
frame; in the above example it would display:

BAZ ~ BAR ~ FOO ~ SI:*EVAL ~ SI:LISP-TOP-LEVEL1 ~ SI:LISP-TOP-LEVEL

The arrows indicate the direction of calling. A numeric argument specifies how
many frames to display.

The M-B command displays a more extensive backtrace including the source file name
of a function (when relevant). It indicates the names of the arguments to the
functions and their current values; for the example above it might look like:

BAZ:
Arg 0 (X): 13
Arg 1 (V): 1

BAR:
Arg 0 (ADDEND): 13

FOO:
Arg 0 (FROB): (A Be. D)

The c-M-B command displays a verbose backtrace of the stack like the corresponding
M-B command, but instead of censoring the stack it additionally displays internal Lisp
interpreter frames. Ordinarily, when running interpreted code the Debugger tries to
skip over frames that belong to functions of the interpreter, such as *eval, prog,
and cond, and only show "interesting" functions. The c-M-B command does not
skip such frames.

17.7 Debugger Commands for Stack Manipulation

Commands such as c-N and M-N, which are meaningful to repeat, take a prefix
numeric argument and repeat that many times. The numeric argument is typed by
using c- or M- and the number keys, as in the editor.

The c-N command moves down to the next frame (that is, it changes the current
frame to be the frame that called it) and displays the frame in this same format.

c-P or RETURN moves up to the previous frame (that is, the one that this one called)
and displays the frame in the same format.

M-< moves to the stack frame where the error occurred (the top or most recent
frame) and displays that frame. Use c-p after M-< to go up through signal,
handlers, and so forth, in turn, until you get to the highest possible frame - the
call to the Debugger itself.

264

Program Development Utilities February 1985

ra-> goes to the bottom (the oldest frame) and displays that frame.

c-s asks you for a string, and searches the stack for a frame whose executing
function's name contains that string. That frame becomes current and is displayed.

ra-ti moves to the next frame and displays it in full-screen format.

ra-P moves to the previous frame and displays it in full-screen format.

The C-M-ti command moves down to the next frame and displays it like the
corresponding c-ti command, but instead of censoring the stack it additionally
displays internal Lisp interpreter frames. Ordinarily, when running interpreted code
the Debugger tries to skip over frames that belong to functions of the interpreter,
such as *eval, prog, and cond, and only show "interesting" functions. The c-M-N
command does not skip such frames.

The C-M-P command moves up to the previous frame and displays it like the
corresponding c-P command, but instead of censoring the stack it additionally
displays internal Lisp interpreter frames. Ordinarily, when running interpreted code
the Debugger tries to skip over frames that belong to functions of the interpreter,
such as *eval, prog, and cond, and only show "interesting" functions. The C-M-P

command does not skip such frames.

The C-M-U command goes down the stack to the next "interesting" function and
makes that the currellt frame. When running interpreted code, the Debugger tries
to skip over frames that belong to functions of the interpreter, such as *eval, prog,
and cond, and only show interesting functions.

17.8 Debugger Commands That Call Other Systems

17.8.1 Entering the Editor From the Debugger

c-E puts you into the editor, looking at the source code for the function in the
current frame. This is useful when you have found a function that caused the error
and needs to be fIxed. The editor command c-i! returns to the Debugger, if it is
still there.

17.8.2 Sending a Bug Report

c-M sends a bug report. It creates a new process and runs the bug function in that
process. It starts up a mail-sending window that contains a copy of the error
message and an extensive backtrace of the stack. It prompts for the number of
frames to include in the backtrace. You are expected to supply context information
explaining what you were doing when the problem occurred, preferably including a
way for the person reading the bug report to make it happen again. The stack
trace by itself is not adequate information for debugging. When you type the END

key the bug report is transmitted as mail and the window containing the Debugger
is reselected.

265

February 1985 Debugger

You can also use normal window-switching commands such as FUNCTION S to switch
back and forth between the Debugger and the mail-sending window while composing
the bug report. A numeric argument to c-M controls the number of stack frames in
the backtrace that have complete information. The current stack frame at the time
c-M is typed begins the backtrace, so you might want to type M-< before c-M if you
have been examining frames other than the one that got the error.

17.8.3 Entering the Display Debugger

C-M-W calls the Display Debugger, a window-oriented Debugger, which is self­
explanatory.

17.9 Debugger Commands for Information Display

Backtraces start at the current frame. Give an argument to specify how many
frames to show.

M-L displays the current frame in full-screen format, which shows the arguments
and their values, the local variables and their values, and the machine code with an
arrow pointing to the next instruction to be executed. If a function setqs one of its
arguments, M-L shows both the original argument supplied by the caller and the
current value of the variable.

c-M-A takes a numeric argument n, and displays the value of the nth argument of
the current frame. The default value for the argument is 0, meaning the first
frame.

It leaves • set to the value of the argument, so that you can use the Lisp read-eval­
print loop to examine it. It also leaves + set to a locative pointing to the argument
on the stack, so that you can change that argument (by calling rplacd on the
locative). See the function dbg:arg, page 267. See the function dbg:loc, page 268.

c-,.,.-L takes a numeric argument n, and displays the value of the nth local variable
of the current frame. The default value for the argument is 0, meaning the first
frame. For example, c-,.,.-l c-,.,.-s c-f"I-L displays local argument number 15.

When an error happens in a function that takes an &rest parameter and the actual
argument list passed is quite long, you can view the entire &rest argument using
c-,.,.-L. For example, if the last argument displayed before the rest argument is arg
3, then c-M-4 c-,.,.-L gets the rest argument. Use c-M-L and add one to the last
number it shows you.

c-fWl-L leaves • set to the value of the argument, so that you can use the Lisp read­
eVal-print loop to examine it. It also leaves + set to a locative pointing to the

266

Program Development Utilities February 1985

argument on the stack, so that you can change that argument (by calling rplacd on
the 10cative).See the function dbg:arg, page 267. See the function dbg:loc, page
268.

C-I"I-V takes a numeric argument It, and displays the value of the nth argument of
the frame that was trapped.an-exit. If the frame is not in the process of returning
values, the command displays an error message. C-I"I-V is meaningful only when you
are using trap-on-exit (see ~-X) and looking at a frame that is about to return. See
the function dbg:val, page 268.

c-I"I-F displays the function executing in the current frame. It ignores its numeric
argument and does not allow you to change the function. It leaves • set to the
value of the argument, so that you ean use the Lisp read-eval-print loop to examine
it. It also leaves + set to a locative pointing to the argument on the stack, so that
you can change that argument (by calling rplacd on the locative). See the function
dbg:fun, page 268.

c-I"I-H describes any condition handlers established by the current frame (or its
subframes if it is an interpreted function).

C-I"I-S describes any special-variable bindings in the current frame (or its subframes if
it is an interpreted function).

M-S asks for the name of a special variable and displays its value in the binding
context of the current frame. It leaves III set to the value that was displayed.

M-I (for Instance) helps you examine the values of instance variables in the stack
group being debugged. The command prompts you for the name of an instance
variable and displays the value of that instance variable, inside the instance that is
the value of self in the environment of the current frame.

The I"I-S command can be used to evaluate a special variable in the context of the
current frame. This works even f6r the special variables listed as exceptions (earlier
in this section).

c-A displays the argument list of the function in the current frame.

17.10 Debugger Commands That Trap on Frame Exit

If a frame with the trap-an-exit flag set returns or is thrown through, the Debugger
is entered. Press RESUME to continue returning or throwing. The ABORT key,
however, bypasses the trap-on-exit mechanism. Note that trap on exit also occurs if
the frame is thrown through.

267

February 1985 Debugger

c-X toggles the trap-on-exit flag of the current frame and displays its new state.

M-X sets the trap-on-exit flag in the current frame and all its callers.

C-M-X clears the trap-on-exit flag in the current frame and all its callers.

17.11 Debugger Commands for DynamIc Breakpoints and Stepping
Through Compiled Code

There are two ways of setting breakpoints in a compiled function. One is to insert a
db, call, which enters the debugger when it is executed. The other way is to use
the compiled function stepper facility in the debugger. Using this, you can put a
breakpoint at an arbitrary instruction in a compiled function.

These commands step through compiled code:

c-sh-S

M-sh-C

c-sh-L

M-sh-S

Prompts for a function name and a PC (that is, instruction within
a function), and puts a breakpoint at that PC. When that PC is
reached during execution, the debugger is entered. A numeric
argument sets a breakpoint at that PC in the current frame.

Clears all breakpoints.

Lists breakpoints.

Steps through compiled cod~. Executes one instruction. Note that
this steps over function calls. pot into the called function.

Not a stepping command, but useful to display the contents of the
frame while stepping.

17.12 Debugger Functions

The Debugger's command loop lets you type in Lisp forms, which it reads, evaluates,
and prints. When you are typing these forms, you can use the following functions
to examine or modify the arguments, locals, function object, and values being
returned in the current frame.

268

Program Development Utilities February 1985

dbg:arg name-or-number Function
Returns the value of argument name-or-number in the current stack frame.
(setf (dbg:arg n) x) sets the value of the argument n in the current frame
to the value of x. name-or-number can be the number of the argument (for
example, 0 to specify the first argument) or the name of the argument. This
function can be called only from the read-eval-print loop of the Debugger.

dbg:loc name-or-number Function
Returns the value of the local variable name-or-number in the current stack
frame. (setf (dbg:loc n) x) sets the value of the local variable n in the
current frame to the value of x. name-or-number can be the number of the
local variable (for example, 0 to specify the first local variable) or the name of
the local variable. This function can be called only from the read-eval-print
loop of the Debugger.

dbg:fun Function
Returns the function object of the current stack frame.
(setf (dbg:fun) x) sets the function object of the current frame to the
value of x. This function can be called only from the read-eval-print loop of
the Debugger.

dbg:val &optional val-no 0 Function
Returns the value of the val-noth value to be returned from the current
stack frame. (setf (dbg:val val~no) x) sets the value of the val-noth value
to be returned from the current frame to the value of x. val-no must be a
fixnum (since values do not have names) and defaults to o. (dbg:val)
without a value number gives the first value. This function can be called
only from the read-eval-print loop of the Debugger.

17.13 Debugger Variables

The Debugger uses the following variables:

dbg:*frame* Variable
Inside the read-eval-print loop of the Debugger, the value of dbg:*frame* is
the location of the current frame.

dbg:*defer-package-d.wim* Variable
When this is nil (the default), the Debugger searches over all packages to
find any look-alike symbols, when errors concerning unbound variables occur.

When the option is not nil, the search does not occur until you type c-sh-P.
In this case the Debugger offers c-sh-P in the list of commands even if the
search would find no look-alike symbols.

269

February 1985 Debugger

dbg:*debug-io-override* Variable
This is used during debugging to divert the Debugger to a stream that is
known to work. If the value of this variable is nil (the default), the
Debugger uses the stream that is the value of debug-io. But if the value of
dbg:*debug-io-override* is not nil, the Debugger uses the stream that is
the value of this variable instead. This variable should always be set (using
setq), not bound, so all processes and stack groups can see it.

dbg:*show-backtrace* Variable
Backtrace information appears when you enter the Debugger. The default is
nil.

Value

nil

t

Meaning

The Debugger startup message does not include any
backtrace information.

The Debugger startup message includes a three-element
backtrace.

270

Program Development Utilities February 1985

271

February 1985 Debugger

18. Summary of Debugger Commands

e-A Displays argument list of function in current frame. It displays only
the names of the arguments, not their values.

c-M-A Examines or changes the nth argument of the current frame.

e-B Displays a brief backtrace, includillg only tne names of the functions.

M-B Displays a more extensive backtrace than e-B, including the names of
the arguments to the functions and their current values.

e-M-B Displays a longer backtrace than e-B and M-B, providing the names of
the arguments to the functions and their current values as well as
the internal frames of the Lisp interpreter.

RESUME Attempts to continue execution, if possible.

s-sh-C Attempts to continue, setqing the unbound variable or otherwise
permanently fIxing the error.

e-E Puts you in the editor with the cursor positioned at the source code
for the function in the current frame.

e-M-F Sets • to the function in the current frame.

e-G or ABORT Quits various Debugger commands; use to escape from typing in a
form.

e-M-H Describes any condition handlers established by the current frame.

Evaluates an instance variable of the instance that is self in the
current frame.

e-L, REFRESH Redisplays error message and current frame.

M-L Displays full-screen typeout of current frame.

e-M-L Gets local variable n.

e-M Sends mail to report a bug.

e-N, LINE Moves to next frame. With argument of n, moves down n frames.

M-N Moves to next frame with full-screen typeout. With argument of n,
moves down n frames.

e-M-N Moves to next frame even if it is "uninterestin~". With argument of
n, moves down n frames.

e-P, RETURN Moves to previous frame. With argument or n1 moves up n frames.

M-P Moves to previous frame with fuU-scree~ typeout. With argument of
n, moves up n frames.

272

Program Development Utilities February 1985

C-M-P

c-R

C-s

c-T

C-M-U

C-M-W

C-x

c-i!, ABORT

? or HELP

c-HELP

c-sh-S

M-sh-C

c-sh-L

M-sh-S

C-0--C-M-9

Moves to previous frame even if it is "uninteresting". With argument
of n, moves up n frames.

Returns from the current frame.

Reinvokes the function in the current frame (throws back to it and
starts it over at its beginning).

Searches for a frame containing a user-specified function.

Evaluates a special variable in the binding context of the current
frame.

Describes any special-variable bindings established by the current
frame.

Throws a value to a tag.

Moves down the stack to the next "interesting" frame.

Gets the nth value being returned by the current frame.

Invokes the Display Debugger.

Toggles the trap-on-exit flag of the current frame.

Sets the trap-on-exit flag in the current frame and all its callers.

Clears the trap-on-exit flag in the current frame and all its callers.

Aborts the computation and throws back to the most recent break or
Debugger, to the program's "command level", or to Lisp top level.

Displays a brief help message.

Displays a detailed help message.

Goes to top or most recent frame of stack, the stack where the error
occurred.

Goes to bottom or oldest frame of stack.

Prompts for a function name and a PC (that is, instruction within a
function), and puts a breakpoint at that PC.

Clears all breakpoints.

Lists breakpoints.

Steps through compiled code. Executes one instruction. Note that
this steps over function calls, not into the called function.

Numeric arguments to the following command are specified by typing
a decimal number with the CONTROL and/or META keys held down.

273

February 1985 Debugger

19. Summary of Debugging Aids

Anyone who writes Lisp programs should become familiar with these debugging
facilities.

• The trace facility provides the ability to perform certain actions at the time a
function is called or at the time it returns. The actions can be simple typeout,
or more sophisticated debugging functions. See the section "Tracing Function
Execution", page 275.

• The advise facility is a somewhat similar facility for modifying the behavior of
a function. See the section "Advising a Function", page 281.

• The step facility allows the evaluation of a form to be intercepted at every step
so that the user can examine just what is happening throughout the execution
of the form. See the section "Stepping Through an Evaluation", page 287.

• The evalhook facility allows you to get at a particular Lisp form whenever the
evaluator is called. The step facility uses evalhook. See the section
"evalhook", page 289.

274

Program Development Utilities February 1985

275

February 1985 Debugger

20. Tracing' Function Execution

The trace facility allows you to trace some functions. Tracing is useful when you
need to find out why a program behaves in an unexpected manner, particularly
when you suspect that arguments are being passed incorrectly or functions are being
called in the wrong sequence. The trace facility is closely compatible with Maclisp.

Certain special actions are taken when a traced function is called and when it
returns. The default tracing action prints a message when the function is called,
showing its name and arguments, and another message when the function returns,
showing its name and value(s).

You invoke the trace facility in several ways:
• Use the trace and untrace special forms.

• Click on [Trace] in the System menu. Enter or point to the function to be
traced; a menu of options pops up.

• Invoke the Trace (M-X) command in the editor. Enter the function to be
traced; a menu of options pops up.

The menu options are also available with trace; however, the syntax is complex.
For a table explaining the correspondence between menu options and trace options:

trace
A trace form looks like:

(trace spec-l spec-2 ...)

Each spec can take any of the following forms:

a symbol

Special Form

This is a function name, with no options. The function is traced in
the default way, printing a message each time it is called and each
time it returns.

a list (function-name option-l option-2 •.•)
{unction-name is a symbol and the options control how it is to be
traced. For a list of the various options: See the section "Options to
trace", page 276. Some options take arguments, which should be
given immediately following the option name.

a list (:function (unction-spec option-l option-2 •••)
This option is like the previous form except that {unction-spec need
not be a symbol. (See the section "Function Specs" in Reference
Guide to Symbolics-Lisp.) It exists because if {unction-name were a
list in the previous form, it would instead be interpreted as the
following form:

276

Program Development Utilities February 1985

a list «function-l function-2 •••) option-l option-2 •••)
All of the functions are traced with the same options. Each function
can be either a symbol or a general function-spec.

trace returns as its value a list of names of aU functions it traced. If called
with no arguments, as just (trace), it returns a list of aU the functions
currently being traced.

If you attempt to trace a function already being traced, trace calls untrace
before setting up the new trace.

Tracing is implemented with encapsulation, so if the function is redefined (for
example, with defun or by loading it from a compiled code file) the tracing is
transferred from the old definition to the new definition.

See the section "Encapsulations" in Reference Guide to Symbolics-Lisp.

20.1 Options to trace

The following trace options exist:

:break pred
Enters a breakpoint after printing the entry trace information but before
applying the traced function to its arguments, if and only if pred evaluates to
non-nil. During the breakpoint, the symbol arglist is bound to a list of the
arguments of the function.

:exitbreak pred
This is just like :break except that the breakpoint is entered after the
function has been executed and the exit trace information has been printed,
but before control returns. During the breakpoint, the symbol arglist is
bound to a list of the arguments of the function, and the symbol values is
bound to a list of the values that the function is returning.

:error Calls the Debugger when the function is entered. Use RESUME to continue
execution of the function. If this option is specified, no printed trace output
appears other than the error message displayed by the Debugger. (Note: If
you also want to call the Debugger when the function returns, use the
Debugger's c-x command.)

:step Steps through the function whenever it is called. See the section "Stepping
Through an Evaluation", page 287.

:entrycond pred
Prints trace information on function entry only if pred evaluates to non-nil.

:exitcond pred
Prints trace information on function exit only if pred evaluates to non-nil.

277

February 1985 Debugger

:cond pred
Prints trace information on function entry and exit only if pred evaluates to
non-nil.

:wherein function
Traces the function only when it is called, directly or indirectly, from the
specified function {unction. You can give several trace specs to trace, all
specifying the same function but with different :wherein options, so that the
function is traced in different ways when called from different functions.

This is different from advise-within, which only affects the function being
advised when it is called directly from the other function. The
trace :wherein option means that when the traced function is called, the
special tracing actions occur if the other function is the caller of this function,
or its caller's caller, or its caller's caller's caller, and so on.

:per-process process
Traces the function in the specified process only. It pops up a menu of
processes and you choose the one in which to trace the function.

:argpdl pdl
Specifies a symbol pdl, whose value is initially set to nil by trace. When the
function is traced, a list of the current recursion level for the function, the
function's name, and a list of arguments is pushed onto the pdl when the
function is entered, and then popped when the function is exited. The pdl
can be inspected from within a breakpoint, for example, and used to
determine the very recent history of the function. This option can be used
with or without printed trace output. Each function can be given its own
pdl, or one pdl can serve several functions.

:entryprint form
form is evaluated and the value is included in the trace message for calls to
the function. You can give this option more than once, and all the values
will appear, preceded by \ \.

:exitprint form
form is evaluated and the value is included in the trace message for returns
from the function. You can give this option more than once, and all the
values will appear, preceded by \ \.

:print form
form is evaluated and the value is included in the trace messages for both
calls to and returns from the function. You can give this option more than
once, and all the values will appear, preceded by \ \.

:entry list
Specifies a list of arbitrary forms whose values are printed along with the
usual entry-trace. The list of resultant values, when printed, is preceded by
\ \ to separate it from the other information.

:exit list

278

Program Development Utilities February 1985

Similar to :entry, but specifies expressions whose values are printed with the
exit-trace. The list of values printed is preceded by \ \.

:arg :value :both nil
Specifies which of the usual trace printouts should be enabled.

If you specify

:arg

:value

:both

nil

None

Then

On function entry prints the name of the function and the·
values of its arguments.

On function exit prints the returned value(s) of the
function.

Same as if both :value and :arg were specified.

Same as if neither :value or :arg was specified.

The default is to :both.

If any further options appear after one of these, they are not treated as
options. Rather, they are considered to be arbitrary forms whose values are
to be printed on entry and/or exit to the function, along with the normal
trace information. The values printed are preceded by a / /, and follow any
values specified by :entry or :exit. Note that since these options "swallow"
all following options, if one is given it should be the last option specified.

If the variable arglist is used in any of the expressions given for the :cond, :break,
:entry, or :exit options, or after the :arg, :value, :both, or nil option, when those
expressions are evaluated the value of arglist will be bound to a list of the
arguments given to the traced function. Thus the following form would cause a
break in foo if and only if the first argument to foo is nil.

(trace (faa :break (null (car arglist»»

If the :break or :error option is used, the variable arglist will be valid inside the
break-loop. If you setq arglist, the arguments seen by the function will change.

Similarly, the variable values will be a list of the resulting values of the traced
function. For obvious reasons, this should only be used with the :exit option. If
the :exitbreak option is used, the variables values and arglist are valid inside the
break-loop. If you setq values, the values returned by the function will change.

You can "factor" the trace specifications, as explained earlier. For example,

(trace «faa bar) :break (bad-p arglist) :value»

is equivalent to

(trace (faa :break (bad-p arglist) :value)
(bar :break (bad-p arglist) :value»

Since a list as a function name is interpreted as a list of functions, nonatomic
function names are specified as follows:

279

February 1985 Debugger

(trace (:funct.ion (:method flavor :message) :break t»

(See the section "Function Specs" in Reference Guide to Symbolics-Lisp.)

trace-compile-flag Variable
If the value of trace-compile-flag is non-nil, the functions created by trace
will get compiled, allowing you to trace special forms such as cond without
interfering with the execution of the tracing functions. The default value of
this flag is nil.

20.2 Controlling the Format of trace Output

Tracing output is printed on the stream that is the value of trace-output. This is
synonymous with terminal-io unless you change it. Following is an example of the
default form of trace output:

1 Enter FACT 4.
I 2 Enter FACT 3.
I 3 Enter FACT 2.
I I 4 Enter FACT 1.
I I 5 Enter FACT O.
I I 5 Exit FACT 1.
I I 4 Exit FACT 1.
I 3 Exit FACT 2.
I 2 Exit FACT 6.

Exit FACT 24.

You can use the variables si:*trace-columns-per-Ievel*, si:*trace-bar-p*,
si:*trace-bar-rate*, and si:*trace-old-style* to control the format of trace output.

si:*trace-columns-per-Ievel* Variable
For trace output, controls the number of columns of indentation that are
added for each level of function call. The value must be an integer. The
default is 2.

si:*trace-bar-p* Variable
For trace output, controls whether columns of vertical bars are printed. If
the value is not nil, they are printed; otherwise, spaces are printed instead of
the vertical bars. The default is t (print the bars).

si:*trace-bar-rate* Variable
When si:*trace-bar-p* is not nil, columns of vertical bars are printed in
trace output for every n levels of function call, where n is the value. The
value must be an integer. The default is 2.

280

Program Development Utilities February 1985

si:·trace-old-style· Variable
If not nil, the old, Maclisp-compatible form of printing trace output is used.
The default is nil (use the new style).

20.3 Untracing Function Execution

untrace "e &rest fns Special Form
Use untrace to undo the effects of trace and restore functions fns to their
normal, untraced state. untrace takes multiple specifications, for example,
(untrace foo bar baz). Calling untrace with no arguments untraces all
functions currently being traced.

281

February 1985 Debugger

21. Advising a Function

To advise a function is to tell a function to do something extra in addition to its
actual definition. Advising is achieved by means of the function advise. The
something extra is called a piece of advice, and it can be done before, after, or
around the definition itself. The advice and the definition are independent, in that
changing either one does not interfere with the other. Each function can be given
any number of pieces of advice.

Advising is fairly similar to tracing, but its purpose is different. Tracing is intended
for temporary changes to a function to give the user information about when and
how the function is called and when and with what value it returns. Advising is
intended for semipermanent changes to what a function actually does. The
differences between tracing and advising are motivated by this difference in goals.

Advice can be used for testing out a change to a function in a way that is easy to
retract. In this case, you would call advise from the console. It can also be used
for customizing a function that is part of a program written by someone else. In
this case you would be likely to put a call to advise in one of your source files or
your login in it file rather than modifying the other person's source code. See the
section "Logging in" in User's Guide to Symbolics Computers.

Advising is implemented with encapsulation, so if the function is redefined (for
example, with defun or by loading it from a compiled code file), the advice will be
transferred from the old definition to the new definition. See the section
"Encapsulations" in Reference Guide to Symbolics-Lisp.

advise function class name position &body forms
A function is advised by the special form

(advi se function class name position
forml form2 ...)

None of this is evaluated.

Special Form

function Specifies the function to put the advice on. It is usually a symbol,
but any function spec is allowed. (See the section "Function
Specs" in Reference Guide to Symbolics-Lisp.)

class Specifies either :before, :after, or :around, and says when to
execute the advice (before, after, or around the execution of the
definition of the function). The meaning of :around advice is
explained a couple of sections below.

name Specifies an arbitrary symbol that is remembered as the name of
this particular piece of advice. It is used to keep track of multiple
pieces of advice on the same function. If you have no name in
mind, use nil; then we say the piece of advice is anonymous.

282

Proaram Development Utilities February 1985

A given function and class can have any number of pieces of
anonymous advice, but it can have only one piece of named advice
for anyone name. If you try to defme a second one, it replaces
the first.

Advice for testing purposes is usually anonymous. Advice used for
customizing someone else's program should usually be named so
that multiple customizations to one function have separate names.
Then, if you reload a customization that is already loaded, it does
not get put on twice.

position Specifies where to put this piece of advice in relation to others of
the same class already present on the same function.

fonns

Position can have these values:
• position can be nil. The new advice goes in the default

position: it usually goes at the beginning (where it is
executed before the other advice), but if it is replacing
another piece of advice with the same name, it goes in the
same place that the old piece of advice was in.

• position can be a number, which is the number of pieces of
advice of the same class to precede this one. For example, 0
means at the beginning; a very large number means at the
end.

• position can have the name of an existing piece of advice of
the same class on the same function; the new advice is
inserted before that one.

Specifies the advice; they get evaluated when the function is
called.

Example: The following form modifies the factorial function so that
if it is called with a negative argument it signals an error instead of
running forever.
(advise factorial :before negative-arg-check nil

(if (minusp (first arglist»
(ferror "factorial of negative argument"»)

unadvise &optional function class position Special Fonn
Removes pieces of advice. None of its subforms are evaluated. function and
class have the same meaning as they do in the function advise. position
specifies which piece of advice to remove. It can be the numeric index (0
means the first one) or it can be the name of the piece of advice.

unadvise can remove more than one piece of advice if some of its arguments
are missing or nil. The arguments function, class, and position all act
independently. A missing value or nil means all possibilities for that aspect
of advice. For example, the following form removes all :before, :after, and
:around advice named negative-arg-cbeck on the factorial function:

283

February 1985 Debugger

(unadvise factorial nil negative-arg-check)

In this example unadvise removes all :around advice on all functions in all
positions with all names:

(unadvise nil :around)

In this example unadvise removes all classes of advice named
my-personal-advice on all functions:

(unadvise nil nil my-persona1-advice)

(unadvise) removes all advice on all functions, since {unction, class, and
position take on all possible values.

The following are the primitive functions for adding and removing advice. Unlike
the special forms advise and unadvise, the following are functions and can be
conveniently used by programs. advise and unadvise are actually macros that
expand into calls to these two.

si:advise-l function class name position fonns Function
Adds advice. The arguments have the same meaning as in advise. Note
that the fonns argument is not a &rest argument.

si:unadvise-l {unction &optional class position Function
Removes advice. function, class, and position are independent. If {unction,
class, or position is nil, or if class or position is unspecified, all classes of
advice or advice for all functions, at all positions, or with all names is
removed.

You can find out manually what advice a function has with grindef, which grinds
the advice on the function as forms that are calls to advise. These are in addition
to the definition of the function.

To poke around in the advice structure with a program, you must work with the
encapsulation mechanism's primitives. See the section "Encapsulations" in Reference
Guide to Symbolics-Lisp.

si:advised-functions Variable
A list of all functions that have been advised.

21.1 Designing the Advice

For advice to interact usefully with the definition and intended purpose of the
function, it must be able to interface to the data flow and control flow through the
function. The system provides conventions for doing this.

The list of the arguments to the function can be found in the variable arglist.

284

Program Development Utilities February 1985

:before advice can replace this list, or an element of it, to change the arguments
passed to the definition itself. If you replace an element, it is wise to copy the
whole list first with:

(setq argl ist (copyl ist argl ist»

After the function's definition has been executed, the list of the values it returned
can be found in the variable values. :after advice can set this variable or replace
its elements to cause different values to be returned.

All the advice is executed within a prog, so any piece of advice can exit the entire
function and return some values with return. No further advice will be executed.
If a piece of :before advice does this, then the function's definition will not even be
called.

21.2 :around Advice

A piece of :before or :after advice is executed entirely before or entirely after the
definition of the function. :around advice is wrapped around the definition; that is,
the call to the original definition of the function is done at a specified place inside
the piece of :around advice. You specify where by putting the symbol :do-it in that
place.

For example, (+ 5 :do-it) as a piece of :around advice would add 5 to the value
returned by the function. This could also be done by the following:

(setq values (list (+ 5 (car values»»

as :after advice.

When there is more than one piece of :around advice, they are stored in a sequence
just like :before and :after advice. Then, the first piece of advice in the sequence
is the one started first. The second piece is substituted for :do-it in the first one.
The third one is substituted for :do-it in the second one. The original definition is
substituted for :do-it in the last piece of advice.

:around advice can access arglist, but values is not set up until the outermost
:around advice returns. At that time, it is set to the value returned by the
:around advice. It is reasonable for the advice to receive the values of the :do-it
(for example, with multiple-value-list) and play with them before returning them
(for example, with values-list).

:around advice can return from the prog at any time, whether the original
definition has been executed yet or not. It can also override the original definition
by failing to contain :do-it. Containing two instances of :do-it can be useful under
peculiar circumstances. If you are careless, however, the original definition might be
called twice, but something like the following certainly works reasonably:

(if (foo) (+ 5 :do-it) (* 2 :do-it»

285

February 1985 Debugger

21.3 Advising One Function Within Another

It is possible to advise the function foo only when it is called directly from a specific
other function bar. You do this by advising the function specifier
(:within bar foo). That works by finding all occurrences of foo in the definition
of bar and replacing them with altered-foo-within-bar. This can be done even if
bar's definition is compiled code. The symbol altered-foo-within-bar starts off
with the symbol foo as its definition; then the symbol altered-foo-within-bar,
rather than foo itself, is advised. The system remembers that foo has been
replaced inside bar, so that if you change the definition of bar, or advise it, then
the replacement is propagated to the new definition or to the advice. If you remove
all the advice on (:within bar foo), so that its definition becomes the symbol foo
again, then the replacement is unmade and everything returns to its original state.

(grindef bar) prints foo where it originally appeared, rather than
altered-foo-within-bar, so the replacement will not be seen. Instead, grindef
prints calls to advise to describe all the advice that has been put on foo or
anything else within bar.

An alternate way of putting on this sort of advice is to use advise-within.

advise-within within-function function-to-advise class name position Special Form
&body forms

An advise-within form looks like this:
(advi se-wi th in within-function function-to-advise

class name position
forms ...)

It advises function-to-advise only when called directly from the function
within-function. The other arguments mean the same thing as with advise.
None of them is evaluated.

To remove advice from (:within bar foo), you can use. unadvise on that function
specifier. Alternatively, you can use unadvise-within.

unadvise-within within-function &optional advised-function class
position

An unadvise-within form looks like this:

Special Form

(unadvise-within within-function function-to-advise class position)

It removes advice that has been placed on (:within within-function
function-to-advise). The arguments class and position are interpreted as for
unadvise.

For example, if those two arguments are omitted, then all advice placed on
function-to-advise within within-function is removed. Additionally, if
function-to-advise is omitted, all advice on any function within within-function
is removed. If there are no arguments, than all advice on one function

286

Program Development Utilities February 1985

within another is removed. Other pieces of advice, which have been placed
on one function and not limited to within another, are not removed.

(unadvise) removes absolutely all advice, including advice for one function
within another.

The function versions of advise-within and unadvise-within are called
si:advise-within-l and si:unadvise-within-l respectively. advise-within and
unadvise-within are macros that expand into calls to the other two.

287'

February 1985 Debugger

22. Stepping Through an Evaluation

The step facility gives you the ability to follow every step of the evaluation of a form
and examine what is going on. It is analogous to a single-step proceed facility often
found in machine-language debuggers. Use the step facility if your program is
behaving strangely, and it is not obvious how it is getting into this strange state.
See the section "Stepping".

You can enter the stepper in two ways:

• Use the step function.

• Use the :step option of trace.

step fonn Function
step evaluates fonn with single stepping. It returns the value of fonn.

For example, if you have a function named foo, and typical arguments to it
might be t and 3, you could say

(step '(foo t 3»

If a function is traced with the :step option, then whenever that function is called
it will be single stepped. See the section "Options to trace", page 276. Note that
any function to be stepped must be interpreted; that is, it must be a lambda­
expression. Compiled code cannot be handled by the stepper.

When evaluation is proceeding with single stepping, before any form is evaluated, it
is (partially) printed out, preceded by a right-facing arrow (...) character. When a
macro is expanded, the expansion is printed out preceded by a double arrow (~)
character. When a form returns a value, the form and the values are printed out
preceded by a left-facing arrow (..) character; if more than one value is being
returned, an and-sign (A) character is printed between the values.

Since the forms can be very long, the stepper does not print all of a form; it
truncates the printed representation after a certain number of characters. Also, to
show the recursion pattern of who calls whom in a graphic fashion, it indents each
form proportionally to its level of recursion.

After the stepper prints any of these things, it waits for a command from you. A
variety of commands exist to tell the stepper how to proceed, or to look at what is
happening.

c-N (Next)

SPACE

Steps to the next thing. The stepper continues until the next thing
to print out, and it accepts another command.

Goes to the next thing at this level. In other words, it continues to
evaluate at this level, but does not step anything at lower levels. In

288

Program Development Utilities February 1985

c-u (Up)

c-X (Exit)

c-T (Type)

c-G (Grind)

c-E (Editor)

this way you can skip over parts of the evaluation that do not
interest you.

Continues evaluating until we go up one level. Similar to the SPACE
command; it skips over anything on the current level as well as
lower levels.

Exits; finishes evaluating without any more stepping.

Retypes the current form in full (without truncation).

Grinds (that is, pretty-prints) the current form.

Enters the editor.

c-B (Breakpoint)

c-L

M-L

? or HELP

This command puts you into a breakpoint (that is, a read-eval-print
loop) from which you can examine the values of variables and other
aspects of the current environment. From within this loop, the
following variables are available:

step-form The current form.

step-values The list of returned values.

step-value The first returned value.

If you change the values of these variables, it will work.

Clears the screen and redisplays the last ten pending forms (forms
being evaluated).

Like c-L, but does not clear the screen.

Like c-L, but redisplays all pending forms.

Prints documentation on these commands.

It is strongly suggested that you write a little function and try the stepper on it. If
you get a feel for what the stepper does and how it works, you will be able to tell
when it is the right thing to use to find bugs.

289

February 1985 Debugger

23. evalhook

The evalhook facility provides a "hook" into the evaluator; it is a way you can get a
Lisp form of your choice to be executed whenever the evaluator is called. The
stepper uses evalhook; however, if you want to write your own stepper or
something similar, then use this primitive albeit complex facility to do so.

evalhook Variable
If the value of evalhook is non-nil, then special things happen in the
evaluator. When a form (any form, even a number or a symbol) is to be
evaluated, evalhook is bound to nil and the function that was evalhook's
value is applied to one argument - the form that was trying to be evaluated.
The value it returns is then returned from the evaluator.

evalhook is bound to nil by break and by the Debugger, and setqed to nil
when errors are dismissed by throwing to the Lisp top-level loop. This
provides the ability to escape from this mode if something bad happens.

In order not to impair the efficiency of the Lisp interpreter, several
restrictions are imposed on evalhook. It only applies to evaluation -
whether in a read-eval-print loop, internally in evaluating arguments in
forms, or by explicit use of the function eval. It does not have any effect on
compiled function references, on use of the function apply, or on the
"mapping" functions. (In Zetalisp, as opposed to Maclisp, it is not necessary
to do (·rset t) nor (sstatus evalhook t). Also, Maclisp's special-case check
for store is not implemented.)

evalhook form evalhook &optional applyhook env Function
evalhook is a function that helps exploit the evalhook feature. The form
is evaluated with evalhook lambda-bound to the function evalhook. The
checking of evalhook is bypassed in the evaluation of form itself, but not in
any subsidiary evaluations, for instance of arguments in the form. This is
like a "one-instruction proceed" in a machine-language debugger. env is used
as the lexical environment for the operation. env defaults to the null
environment.

Example:
;; This function evaluates a form while printing debugging
;; information.
(defun hook (x)

(terpri)
(evalhook x 'hook-function»

290

Program Development Utifities February 1985

;; Notice how this function calls evalhook to evaluate the
;; form f, so as to hook the subforms.
(defun hook-function (f)

(let «v (evalhook f 'hook-function»)
(format t Hform: -s-%value: -S-%H f v)
v»

" This isn't a very good program, since if f returns multiple
;; values, it will not work.

The following output might be seen from (book '(cons (car '(a. b» 'e»:

form: (quote (a . b»
value: (a . b)
form: (car (quote (a . b»)
value: a
form: (quote c)
value: c
(a • c)

Normally after eval has evaluated the arguments to a function, it calls the
function. If applyhook exists, however, eval calls the hook with two
arguments: the function and its list of arguments. The values returned by
the hook constitute the values for the form. The hook could use apply on
its arguments to do what eval would have done normally. This hook is
active for special forms as well as for real functions.

Whenever either an evalhook or applyhook is called, both hooks are bound
off. The evalhook itself can be nil if only an applyhook is needed.

applyhook catches only apply operations done by eval. It does not catch
apply called in other parts of the interpreter or apply or funeall operations
done by other functions such as mapcar. In general, such uses of apply
can be dealt with by intercepting the call to mapear, using the applyhook,
and substituting a different first argument.

The argument list is like an &rest argument: it might be stack-allocated but
is not guaranteed to be. Hence you cannot perform side-effects on it and you
cannot store it in any place that does not have the same dynamic extent as
the call to applyhook.

23.1 applyhook

applybook provides a hook into apply, much as evalbook provides a hook into
eval.

291

February 1985 Debugger

applybook Variable
When the value of this variable is not nil and eval calls apply, applybook
is bound to nil and the function that was its value is applied to two
arguments: the function that eval gave to apply and the list of arguments
to that function. The value it returns is returned from the evaluator.

applybook function args evalhook applyhook &optional env Function
function is applied to args with evalbook lambda-bound to the function
evalhook and with applybook lambda-bound to the function applyhook.
Like the evalbook function, this bypasses the first place where the relevant
hook would normally be triggered. env is used as the lexical environment for
the operation. env defaults to the null environment. evalhook or applyhook
can be nil.

292

Program Development Utilities February 1985

293

February 1985 The Inspector

PART IV.

The Inspector

294

Program Development Utilities February 1985

295

February 1985 The Inspector

24. Using the Inspector

24.1 How the Inspector Works

The Inspector is a window-oriented program for inspecting data structures. When
you ask to inspect a particular object, its components are displayed. The particular
components depend on the type of object; for example, the components of a list are
its elements, and those of a symbol are its value binding, function definition, and
property list.

The component objects displayed on the screen by the Inspector are mouse-sensitive,
allowing you to do something to that object, such as inspect it, modify it, or give it
as the argument to a function. Choose these operations from the menu pane at the
top-right part of the screen.

When you click on a component object itself, that component object gets inspected.
It expands to fill the window and its components are shown. In this way, you can
explore a complex data structure, looking into the relationships between objects and
the values of their components.

The Inspector can be part of another program or it can be used standalone; for
example, the Display Debugger can utilize some of the panes of the Inspector. Note,
however, that although the display looks the same as that of the standalone
Inspector, the handling of the mouse buttons depends upon the particular program
being run.

Figure 14 shows the standalone Inspector window. The display consists of the
following panes, from top to bottom:

• A small interaction pane
• A history pane and menu pane
• Some number of inspection panes (three by default)

24.2 Entering and Leaving the Inspector

You can enter the standalone Inspector via:

• Select Activity Inspector

• SELECT I

• [Inspect] in the System menu

• The Inspect command, which inspects its argument, if any

296

Program Development Utilities

M(Package GLOBAL 20315016>
1130
"GLOBAL"
SI :PKG-NEW-SYMBOL-EXTERNAL .. ·ONL Y

-+:SOURCE-FILE-NAME

More crboN

MONhlow

SI :PKG-NEW-SYMBOL-EXlERNAL-ONL Y
Value is unbound
Function is SI:PKG-t£W-SYMBOL-EXTERttAL-ONLY
Property list: (:SOURCE-FILE-NAME M<LOGICAL-PATHNAME "SYS: SYS; PACKAGE"»
Package: M(Package SYSTEM-INTERNAlS 200i3232>

:SOURCE-FILE-NAME
Value is :SOURCE-FILE-NAME
Function is unbound
Property list: NIL
Package: M(Package KEYWORD 20333021>

.t1Itcfft or obJtd

Top orobJed
#(LOGICAL-PATHNAME -SYS: SYS; PACKAGE-)

February 1985

Exit
Return
Modify
OeCache
Clear
Set \

An instance of FS:LOGICAL-PATHNAME. M(Message handler for FS:LOGICAL-PATHNAME>

FS:HOST:
FS:OEVICE:
FS:DIRECTORY:
FS:NAME:
FS:TYPE:
FS:VERSION:
SI:PROPERTY-LIST:
FS:STRING-FOR-PRINTING:

L2"91"83 19:19:49 sr

M(LOGICAL-HOST SYS>
:UNSPECIFIC
(IISYS")
"PACKAGE II
NIL
NIL
M<LMFS-PATHNAME IIQ:>sys>sys>package">
"SYS: SYS; PACKAGE II

USER: Tyi_ Console idle 19 ftinutes

Figure 14. The Inspector.

297

February 1985 The Inspector

• The inspect function, which inspects its argument, if any

Warning: If you enter with the Inspect command or the inspect function, the
Inspector is not a separate activity from the Lisp Listener in which you invoke it.
In this case you cannot use SELECT L to return to the Lisp Listener; you should
always exit via the [Exit] or [Return] option in the Inspector menu. If you forget
and exit the Inspector by selecting another activity, you might need to use
c-M-ABORT to return the Lisp Listener to its normal state.

24.3 The Inspector Interaction Pane

The interaction pane has two functions: to prompt you and to receive input. If you
are not being asked a question, then a read-eval-inspect loop is active. Any forms
you type are echoed in the interaction pane and evaluated. The result is not
printed, but rather inspected. When you are prompted for input, usually due to
having invoked a menu operation, any input you type at the read-eval-inspect loop is
saved away and erased from the interaction pane. When the interaction is finished,
the input is re-echoed and you can continue to type the form.

24.4 The Inspector History Pane

The history pane maintains a list of all objects that you have inspected, allowing you
to back up and continue down another path. The last recently displayed object is at
the top of the list, and the most recently displayed object is at the bottom.

You can inspect any mouse-sensitive object in the history pane by clicking on it. In
addition, you can perform other operations by placing the mouse cursor in the line
region, which is the left-hand side of the history pane, the area bounded by the
margin on one side and the list of objects on the other. In the line region the
shape of the mouse cursor changes to a rightward-pointing arrow.

• Clicking left in the line region inspects the object. This is sometimes useful
when the object is a list and it is inconvenient to position the mouse at the
open parenthesis.

• Clicking middle deletes the object from the history.

The history pane also maintains a cache allowing quick redisplay of previously
displayed objects. This means that merely reinspecting an object does not reflect
any changes in its state. Clicking middle in the line region deletes the object from
the cache as well as deleting it from the history pane. Use [DeCache] in the menu
pane to clear everything from the cache.

298

Program Development Utilities February 1985

The history pane has a scroll bar at the far left, as well as scrolling zones in the
middle of its top and bottom edges. The last three lines of the history are always
the objects being inspected in the inspection panes.

24.5 The Inspector Menu Pane

The menu pane (to the right of the history pane) displays these infrequently used
but useful commands:

[Exit]

[Return]

[Modify]

[DeCache]

[Clear]

[Set] \

Equivalent to c-i!. Exits the Inspector and deactivates the frame.

Similar to [Exit], but allows selection of an object to be returned as
the value of the call to inspect.

Allows simple editing of objects. Selecting [Modify] changes the mouse
sensitivity of items on the screen to only include fields that are
modifiable. In the typical case of named slots, the names are the
mouse-sensitive parts. When the field to modify has been selected, a
new value can be specified either by typing a form to be evaluated or
by using the mouse to select any normally mouse-sensitive object.
The object being modified is redisplayed. Clicking right at any time
aborts the modification.

Flushes all knowledge about the insides of previously displayed objects
and redisplays the currently displayed objects.

Clears out the history, the cache, and all the inspection panes.

Sets the value of the symbol \ by choosing an object.

24.6 The Inspector Inspection Pane

Each inspection pane can inspect a different object. When you inspect an object it
appears in the large inspection pane at the bottom, and the previously inspected
objects shift upward.

At the top of an inspection pane is either a label, which is the printed
representation of the object being inspected in that window, or the words "a list",
which means a list is being inspected. The main body of an inspection pane is a
display of the components of the object, labelled with their names, if any. You can
scroll this display using the scroll bar on the left or the "more above" and "more
below" scrolling zones at the top and bottom.

Clicking 'on any mouse-sensitive object in an inspection pane inspects that object.
The three mouse buttons have distinct meanings, however.

299

February 1985 The Inspector

• Clicking left inspects the object in the bottom pane, pushing the previous
objects up.

• Clicking middle inspects the object but leaves the source (namely, the object
being inspected in the window in which the mouse was clicked) in the second
pane from the bottom.

• Clicking right tries to find and inspect the function associated with the selected
object (for example, the function binding if a symbol was selected).

24.6.1 Inspection Pane Display

The information that the Inspector displays depends upon the type of the object:

Symbol

List

Instance

Hash Table

Closure

The name, value, function, property list, and package of the symbol
are displayed. All but the name and the package are modifiable.

The list is displayed ground by the system grinder. Any piece of
substructure is selectable, and any car or atom in the list can be
modified.

The flavor of the instance, the method table, and the names and
values of the instance-variable slots are displayed. The instance­
variables are modifiable.

The flavor of the hash table, the method table, and the names and
values of the instance-variable slots of the hash table are displayed,
followed by the key/value pairs for the entries of the hash table.
The value for a given key is modifiable.

The function, and the names and values of the closed variables are
displayed. The values of the closed variables are modifiable.

Named structure The names and values of the slots are displayed. The values are

Array

modifiable.

The leader of the array is displayed if present. For one­
dimensional arrays, the elements of the array are also displayed.
The elements are modifiable.

Compiled code object
The disassembled code is displayed.

Select Method The keyword/function pairs are shown, in alphabetical order by
keyword. The function associated with a keyword is settable via
the keyword.

Stack Frame This is a special internal type used by the Display Debugger. It is
displayed as either interpreted code (a list) or as a compiled code
object with an arrow pointing to the next instruction to be
executed.

300

Program Development Utilities February 1985

24.7 Special Characters Recognized by the Inspector

Some special keyboard characters are recognized when not in the middle of typing in
a form.

c-i!

BREAK

ESCAPE

Exits and deactivates the Inspector.

Runs a break loop in the typeout window of the bottom-most inspection
pane.

Reads a form, evaluates it, and prints the result instead of inspecting it.

24.8 Examining a Compiled Code File

To examine a compiled code file, use si:unbin-file. The output format from
unbin-file includes disassembled code for any compiled functions in the compiled
code file.

si:unbin-file file &optional outfile Function
Converts the compiled code file file to a human-readable file, which you can
optionally specify. It includes disassembled code for any compiled functions in
the compiled code file.

301

February 1985 The Peek Program

PART V.

The Peek Program

302

Program Development Utilities February 1985

303

February 1985 The Peek Program

25. Peek

You start up Peek by pressing SELECT P or by using the Select Activity Peek
command.

The Peek program gives a dynamic display of various kinds of system status. When
you start up a Peek, a menu is displayed at the top, with one item for each system­
status mode. The item for the currently selected mode is highlighted in reverse
video. If you click on one of the items with the mouse, Peek switches to that mode.
Pressing one of the keyboards keys as listed in the Help message also switches Peek
to the mode associated with that key. The Help message is a Peek mode and Peek
starts out in the Help mode.

Pressing the HELP key displays the Help message.

The Q command exits Peek and returns you to the window from which Peek was
invoked.

Most of the modes are dynamic: they update some part of the displayed status
periodically. The time interval between updates can be set using the 2 command.
Pressing ~, where n is some number, sets the inter-update time interval to n
seconds. U sing the 2 command does not otherwise affect the mode that is running.

Some of the items displayed in the modes are mouse-sensitive. These items, and the
operations that can be performed by clicking the mouse on them, vary from mode to
mode. Often clicking the mouse on an item gives you a menu of things to do to
that object.

The Peek window has scrolling capabilities, for use when the status display overruns
the available display area. See the section "Scrolling".

As long as the Peek window is exposed, it continues to update its display. Thus a
Peek window can be used to examine things being done in other windows in real
time.

The Help message consists of the following:

This is the Peek utility program. It shows a continually updating
display of status about some aspect of the system, depending on what
mode it is in. The available modes are listed below. Each has a name,
followed by a single character in parentheses, followed by a description.
To put Peek into a given mode, click on the name of the mode, in the command
menu above. Alternatively, type the single character shown below.

Processes (P):
Show all active processes, their states, priorities, quanta, idle times, etc.

304

Program Development Utilities February 1985

Areas (A):
Show all the areas in virtual memory, their types, allocation, etc.

File System (F):
Show all of our connections to various file servers.

Windows (N):

Show all the active windows and their hierarchical relationships.

Servers (S):
Show all active network servers and what they are doing.

Network (N):
Show all local networks, their state and active connections, and network interfaces.

Help (~);
Explain how this program works.

Quit (Q):
Bury PEEK window, exiting PEEK

Hostat (H):
Show the status of all hosts on the Chaosnet

There are also the following single-character commands:
Z (preceded by a number): Set the amount of time between updates, in seconds.

By default, the display is updated every two seconds.
<SPACE>: Immediately update the display.

The commands P, A, F, kI, S, H, and N each place you in a different Peek mode, to
examine the status of different aspects of the Lisp Machine system.

peek &optional <character (quote tv:p» Function
peek displays various information about the system, periodically updating it.
It has several modes, which are entered by pressing a single key that is the
name of the mode. The initial mode is selected by the argument, character.
If no argument is given, peek starts out by explaining what its modes are.

305

March 1985 The Compiler

PART VI.

The Compiler

306

Program Development Utilities March 1985

307

March 1985 The Compiler

26. Introduction to the Compiler

The purpose of the Lisp compiler is to convert interpreted Lisp functions into
programs in the Symbolics Lisp Machine's instruction set. Compiled functions run
more quickly and take up less storage than interpreted code. They are executed
directly by the machine. The compiler checks for errors and issues warnings
regarding faulty syntax, typographical errors, undeclared variables, and the like.
Because the compiler does all this checking, as well as the fact that compiling code
does not lose any run-time checking, most users debug their programs compiled
rather than debugging them interpreted and compiling them after they work.

26.1 How to Invoke the Compiler

You can invoke the compiler in several ways.

• Use one of several Zmacs commands to compile regions of Lisp code in an
editor buffer to your Lisp environment. Some of the most common commands
are Compile Region (!"I-x) (c-sh-C), Compile Changed Definitions of Buffer
(!"I-X), and Compile Buffer (!"I-x). See the section "Compiling Lisp Programs in
Zmacs" in Text Editing and Processing.

• Call the function compile to compile an interpreted function in Lisp
environment. Compiling an interpreted function in a Lisp Listener converts
the function into a compiled code object in memory. Programmers occasionally
compile interpreted functions to examine the code generated by the compiler.
To examine a compiled function in symbolic form, use the disassemble
function.

• Use compiler:compile-file and related functions, Compile File (!"I-X), or
Compile File at the Command Processor prompt to translate source files into
compiled code files. The purpose of these commands is to produce a translated
version that does the same thing as the original except that the functions are
compiled.

• Invoke make-system or Compile System at the Command Processor prompt to
compile and load large programs, usually consisting of many files.

308

Program Development Utilities March 1985

309

March 1985 The Compiler

27. Structure of the Compiler

The Lisp compiler is actuaUy composed of three distinct pieces of software:

• The stream compiler

• The function compiler

• The bin file dumper

The stream compiler accepts a stream of top-level Lisp forms and processes them.
These forms are usually read from a stream of characters, which can be either a file
or part or all of an editor buffer. The stream compiler passes forms recognized as
function definitions through the function compiler. Certain other forms are also
processed specially: See the section "How the Stream Compiler Handles Top-level
Forms", page 5. Stream compiler output can be sent either to the Symbolics
computer's virtual memory or to a file (via the bin file dumper) for later loading.

The function compiler takes a Lisp function and translates it from Lisp expressions
into machine instructions. Its job includes expanding macros, performing
optimizations, recognizing special forms, and recognizing calls to functions that have
corresponding machine instructions. The function compiler is available to use by
itself as the compile function; it is also called by the stream compiler.

The bin file dumper accepts a stream of Lisp forms and machine-instruction
function definitions (compiled function objects) and writes them into a file in a
compact form understood by the loading function (load). The bin file dumper is
available for use by itself as the sys:dump-forms-to-file function; it is also called by
the stream compiler.

Different combinations of these compilers are meaningful and available:

• The function compiler by itself (via the compile function).

• The bin file dumper by itself (via the sys:dump-forms-to-file function).

• Stream compiler and then the function compiler (c-sh-C or related Zmacs
commands).

• All three compilers (via compiler:compile-file, make-system with the
:compile option, or the Command Processor's Compile System command).

The following diagram shows the relationship of the different compilers to one
another.

310

Program Development Utilities

a stream
~

STREAH COHPILER

'" ~

function definitions
(such as defuns)

other forms

~

(such as defvars)
1

FUNCTION COMPILER
~

compiled function
objects

1
1
1
1
1 1

\-----\ /-----/
-!< ~

/---------------------\
-!< ~

EVAL BIN FILE DUHPER
1 -!<
1 compiled code file
1 ~
1 LOAD
1--------------_1

-!<

virtual memory

March 1985

The Lisp Machine tools you use to invoke compilation determine the path through
the diagram. For example, suppose you run the compiler:compile-file function on
a Lisp source file. The function calls the stream compiler, which in turn calls the
function compiler on any function definitions in the file and then passes the
resulting compiled function objects to the bin file dumper. Other forms are passed
directly to the bin file dumper (right-hand side of the diagram) without being
processed through the function compiler. All output is sent to a compiled code file.
Loading that file creates the effect of compiling the source code directly to virtual
memory. For example, rather than compiling the source file, read it into an editor
buffer and compile the entire buffer via the Zmacs command Compile Buffer (M-X);
the output from the stream compiler and function compiler is evaluated immediateiy
<left-hand side of the diagram). The point is that while these two methods of
compilation operate completely differently, the effect is the same once the results are
in virtual memory.

27.1 How the Stream Compiler Handles Top-level Forms

The stream compiler accepts a stream of top-level Lisp forms and processes them.
These forms are usually read from a stream of characters, which can be either a file
or part or all of an editor buffer. The stream compiler categorizes these forms

311

March 1985 The Compiler

according to the table below and processes each according to its category. It calls the
function compiler to translate a form that defmes a function into a compiled function
object containing compiled instructions. Certain other categories of forms are also
processed specially, as documented in the table below.

The stream compiler remembers certain "declarations" for the duration of the
compilation. For example, when it compiles a macro defmition, it saves the macro
definition for use in processing subsequent top-level forms and function bodies. This
permits a macro defmition different from the one installed in the Symbolics
computer's virtual memory to be used during compilation. Other kinds of
"declarations" are also saved; most of these are documented in the table. The
duration of the compilation during which these "declarations" are saved is usually a
single invocation of the stream compiler, but when a system is being compiled (a
program declared via defsystem) the declarations are in effect for the entire
compilation, regardless of how many files in the system are compiled.

Stream compiler output can be sent either to the Lisp Machine virtual memory or to
a file (via the bin file dumper) for later loading. This output can be regarded as a
stream of forms that are evaluated either immediately, during the compilation, or
later, when the bin file is loaded, depending on the type of compilation.

1. DEFINITIONS

Function Definitions, such as (defun function-spec arguments body .••), (defselect ...),
and (defmethod ...)

The stream compiler calls the function compiler to translate the function
definition into a compiled function object. The result is to define the
function-spec to be the compiled function object. See the function fdefine in
Reference Guide to Symbolics-lisp.

Macro Definitions, such as (defmacro ...) and (macro ...)

The stream compiler saves the definition of the macro for the duration of the
compilation, and calls the function compiler to translate the function definition
into a compiled function object. The result is to define the function-spec to be
a macro whose expander function is the compiled function object. See the
function fdefine in Reference Guide to Symbolics-lisp.

Substitutable Function Definitions, such as (defsubst ...)

The stream compiler saves the definition of the substitutable function for the
duration of the compilation, and calls the function compiler to translate the
function definition into a compiled function object. The result is to define the
function-spec to be the compiled function object. See the function fdefine in
Reference Guide to Symbolics-lisp.

Variable Definitions, such as (defvar •..), (defconst •.•), (defconstant ...), and
(defvar-standard ..•)

312

Program Development Utilities March 1985

The stream compiler saves the declaration of the variable as a special variable
for the duration of the compilation. It passes the form through as the
compiler's output.

Generalized Function Definitions: (def •..) and (deff ...)

The stream compiler processes each subform of def after the initial function
spec as a top-level form.

The stream compiler passes a deff form through as its output and remembers
that it defines a function.

Other Definitions, such as (defstruct ...), (deffiavor ...), (defpackage ..•), and
(defsystem •••)

The processing of each type of definition· is idiosyncratic. The behavior of the
stream compiler for these definition types is defined using the extension
mechanisms discussed in this table, principally macro expansion.

2. COMPILER-SPECIFIC FORMS

(progn form form •••)

Each form is processed as a top-level form. Any macro that expands into
mUltiple top-level forms uses progn to arrange for the stream compiler to
process all of the forms. See the section "Macros Expanding Into Many
Forms" in Reference Guide to Symbolics-lisp.

(eval-when (time time •••) fonn form •••)

Each form is processed under the control of the list of times. If load is one of
the times, the stream compiler processes each form as a top-level form. If
compile is one of the times, each fonn is evaluated during the compilation.

(compiler-let «var val) ...) fonn •••)

Each fonn is processed as a top-level form, with the specified bindings of
special variables in effect.

(function args •••) where the symbol {unction has a compiler:top-Ievel-form
property.

The value of the property must be a function of one argument. This function
controls the behavior of the stream compiler.

3. DECLARATIONS

(special variable variable •..) and (unspecial variable variable •.•)

The stream compiler saves the declaration for the duration of the compilation
and outputs the form unchanged.

313

March 1985 The Compiler

(declare fonn fonn •••)

The stream compiler considers each fonn. If it invokes special or unspecial,
the compiler handles it as if it had appeared at top level. Otherwise, the
compiler simply evaluates {onn.

Use of declare in this way is considered to be an obsolete Maclisp-compatibility
feature. Declaring special variables in a top-level declare form is not advisable
because this hides the variables from the intepreter, which uses special
declarations in the same way as the compiler. It is preferable to declare
special variables with an appropriate special form (such as defvar) that is
understood by both the compiler and the interpreter, or by using special as a
top-level form without enclosing it in declare, or by including a (declare
(special ... » form inside the body of each function that uses the variable.

Forms to be evaluated at compile time should be specified with eval-when
rather than declare. The stream compiler recognizes a top-level (declare
fonnl fonn2 ...) as equivalent to (eval-when (compile) fonnl fonn2 ...) and
evaluates fonnl, fonn2, and so on; if the car of fonn is special or unspecial,
then that form is equivalent to (eval-when (compile load) fonn). Forms
appearing within a top-level declare should be valid top-level forms. Typical
special forms that might appear are special, unspecial, *expr, *lexpr, and
*fexpr.

(local-declare <declaration declaration •••) fonn fonn •••)

The stream compiler processes the fonns as top-level forms, with the specified
declarations in effect. local-declare is considered to be an obsolete feature;
use declare inside function bodies instead.

4. OTHER FORMS

Macro Invocations

The stream compiler expands each top-level form that invokes a macro before
further considering that form. Thus macro expansion can be used to extend
the behavior of the stream compiler. Many definition forms are implemented
by macros that expand into simpler definitions and other forms. For example,
the expansion of such a macro might look like

(progn
(record-source-file-name 'nante 'type)
(eval-when (compile)

things to do at contpile tinte)
(defun ... »

For additional examples, use mexp to examine the expansion of defvar,
defsubst, and defstruct forms.

Ordinary Forms

314

Program Development Utilities March 1985

If the stream compiler does not recognize a form, it simply outputs the form
unchanged.

Forms Protected From the Compiler

To prevent the stream compiler from recognizing a form, if for some reason it
is necessary to pass the form unchanged through the compiler, the safest way
is to conceal it inside an eval form. For example, the following form prevents
the foo function from being converted into a compiled function object.

(eval (quote (defun foo (x) ... »)

Ignored Forms

The stream compiler ignores atoms (both variables and constants), (quote x),
and (comment ...). It outputs no form when one of these appears in its input.

For Maclisp compatibility a number of top-level declaration forms are provided,
including special, unspecial, *expr, *lexpr, and *fexpr.

special &rest symbols Special Form
Declares each of the symbols to be "special" for the Lisp system (for example,
the interpreter and the compiler). Provided for Maclisp compatibility. Note:
defvar is usually preferred over special.

unspecial &rest symbols Special Form
Removes any "special" declarations of the symbols for the Lisp system (for
example, the interpreter and the compiler). Provided for Maclisp
compatibility.

27.1.1 Controlling the Evaluation of Top-level Forms

Sometimes you want to override the stream compiler's default behavior. For
example, you might want a form to be put into the compiled code file (compiled, of
course), or not; evaluated within the compiler, or not; or evaluated if the file is read
directly into Lisp, or not. To tell the stream compiler exactly what to do with a
form, use the general eval-when special form.

eval-when times-list &body forms Special Form
eval-when allows you to tell the compiler exactly when the body forms
should be evaluated. times-list can contain one or more of the symbols load,
compile, or eval, or can be nil.

The interpreter evaluates the body forms only if the times-list contains the
symbol eval; otherwise evaI-when has no effect in the interpreter.

If symbol is present

load

Then forms are

Written into the compiled code file to be evaluated
when the compiled code file is loaded, with the

315

March 1985 The Compiler

compile

eval

exception that defun forms put the compiled
definition into the compiled code file.

Evaluated in the compiler.

Ignored by the compiler, but evaluated when read
into the interpreter (because eval-when is defined
as a special form there).

Example: Normally, top-level special forms such as defprop are evaluated at
load time. If some macro expansion depends on the existence of some
property, for example, constant-value, the definition of that property must be
wrapped inside an (eval-when (compile) ...) so that the property is
available at compile (macro expansion) time.

(eval-when (compile load eval)
(defprop three 3 constant-value»

In addition to eval-when, the compiler:top-level-form property provides another
means for overriding the default behavior of the stream compiler.

compiler: top-level-form Property
The compiler:top-level-form property provides a way to extend the
behavior of the stream compiler when it encounters a top-level form that
looks like (function args .••) and the symbol function has a
compiler:top-level-form property. The value of the property must be a
function of one argument. The compiler, rather than behaving in its normal
fashion, calls the function with the original form as its argument. Whatever
the function returns is dumped as the form to be evaluated at load time.
You can have the function evaluate the form at compile time simply by
calling eval. Note that the form returned by the function does not go back
through the compiler's top-level form processing. This means that the
returned form, which has been dumped to a compiled code file, cannot
contain function definitions that you expect to be compiled.

27.2 Function Compiler

The function compiler takes a Lisp function and translates it from Lisp expressions
into compiled functions. Compiled functions are represented in Lisp by compiled
function objects, which contain machine code as well as various other information.
The printed representation of the object is as follows:

H<OTP-COHPIlEO-FUNCTION nante address)

When dealing with function bodies the function compiler performs the following
operations on a form in this order:

316

Program Development Utilities March 1985

1. Looks for compiler declarations.

2. Performs style checking, unless you explicitly inhibit it.

3. Performs optimizations, if so requested, trying to optimize body forms from the
inside out.

4. Runs transformations.

5. Expands macros.

If the case of a regular function, the entire process is repeated on the function's
arguments. A special form, on the other hand, compiles its subforms, or not,
depending on the syntax of the particular special form. When all the processing is
done, the function compiler generates machine instructions.

27.3 bin File Dumper

The bin file dumper accepts a stream of Lisp forms and/or machine-instruction
function definitions from the function compiler and writes them in a compact form
into a file (called a compiled code file).

It is also possible to make a compiled code file containing data, rather than a
compiled program. Call the bin file dumper by itself via the
sys:dump-forms-to-file function. See the section "Putting Data in Compiled Code
Files", page 25.

By loading the compiled code file (using the load function), the objects represented
in the file are created in your Lisp world.

27.4 Compiler Tools and Their Dii~ferences

27.4.1 Tools for Compiling Code From the Editor Into Your World

You can use several Zmacs commands to compile code in an editor buffer to your
world. Users generally compile routines to memory as soon as they write them,
debugging them before proceeding with more complex routines. The most common
command for incremental compiling is Compile Region (M-X),or c-sh-C.

c-sh-C Compile Region
Compile Region (M-X)

Compiles the region, or if no region is defined, the current definition.
Because recompiling routines as you edit them can be quite time-consuming, Zmacs
provides two commands for compiling only those routines that have changed since
they were last compiled: Compile Changed Definitions (M-X) and Compile Changed
Definitions of Buffer (M-X). These commands obviate the need to remember which

317

March 1985 The Compiler

routines have changed in your buffer or buffers. Alternatively, you can recompile
the en tire buffer.
Compile Changed Definitions (M-X)

Compiles any definitions that have changed in any of the current buffers. With a
numeric argument, it prompts individually about whether to compile particular
changed definitions (the default compiles all changed definitions).
Compile Changed Definitions of Buffer (M-X)

M-sh-C

Compiles any definitions that have changed in the current buffer. With a numeric
argument, it prompts individually about whether to compile particular changed
definitions (the default compiles all changed definitions).
Compile Buffer (M-X)

Compiles the entire buffer. With a numeric argument, it compiles from point to the
end of the buffer. (This is useful for resuming compilation after a prior Compile
Buffer has failed.)

27.4.2 Tools for Compiling Files

Compiling a source file, using Compile File (M-X) or compiler:compile-file, saves the
output in a binary file (called a compiled code file). You can compile a file and also
load the resulting file by using compiler:compile-file-load, or you can load the file
separately into your Lisp world by using load or Load File (M-X).

compiler:compile-file in/He &optional out/He in-package Function
dont-set-default-p

The file in/ile is given to the compiler, and the output of the compiler is
written to a file whose name is infile with a canonical file type of :bin.
outfile, if supplied, lets you change where the output is written.
dont-set-default-p suppresses the changing of the default file name to in/ile,
which normally occurs.

The purpose of compiler:compile-file is to take a file and produce a
translated version that does the same thing as the original except that the
functions are compiled. compiler:compile-file reads through the input file,
processing the forms in it one by one. For each form, suitable binary output
is sent to the compiled code file, which when loaded reproduces the effect of
that source form.

Thus, if the source contains a (defun ...) form at top level, when the
compiled code file is loaded, the function is defined as a compiled function. If,
on the other hand, the source file contains a form that is not of a type
known specially to the stream compiler, then that form (encoded in binary
format) is output "directly" into the compiled code file, so that when that file
is loaded that form is evaluated. For example, if the source file contains
(setq x 3), then the compiler places in the compiled code file instructions to

318

Program Development Utilities March 1985

set x to 3 at load time. (For a more general form, the compiled code fue
would contain instructions to recreate the list structure of a form and then
call eval on it.)

compiler:compiler-file returns the pathname of the output fue, which you
can pass to load to load the compiled code fue.

compiler:compile-file-Ioad infile &optional outfile in-package Function
dont-set-default-p

compiler:compile-file-Ioad compiles a file and then loads the resulting
compiled code file. The file infile is given to the compiler, and the output of
the compiler is written to a file whose name is infile with a canonical file
type of :bin. outfile, if supplied, lets you change where the output is
written. dont-set-default-p suppresses the changing of the default file name
to infile, which normally occurs.

Compile File (M-X)

Compiles a file, offering to save it first (if it has an associated buffer that has been
modified). It prompts for a file name in the minibuffer, using the file associated
with the current buffer as the default. It does not load the fue.

27.4.2.1 File Types of Lisp Source and Compiled Code Files

The results of compilation are written to a file of canonical type :bin. The actual
file types for compiled code files are host-dependent, as are those of the Lisp source
files. The following table shows the file types of both input and output files for
various hosts.

Host type File type of File type of
source file compiled code file

Lisp Machine lisp bin
Multics lisp bin
TOPS-20 LISP, LSP BIN
UNIX I, lisp bn, bin
VAXNMS LSP BIN

27.4.3 Tools for Compiling Single Functions

Compiled functions are Lisp objects that contain programs in the machine instruction
set. Compiling an interpreted function by calling the function compiler on a function
spec, converts it into a compiled function and changes the definition of the function
spec to be that compiled function. Most users do not compile functions directly, but
rather compile files or regions of code in a Zmacs buffer.

319

March 1985 The Compiler

compile function-spec &optionaI lambda-exp Function
compile gets the function defmition from either of its arguments. If the
lambda expression lambda-exp is supplied, compile uses lambda-exp and
converts it into a· compiled function object. If, on the other hand,
lambda-exp is nil, compile gets the function defInition of function-spec,
which is either a function specification or nil. If nil, compile returns the
compiled function object without storing it anywhere. If {unction-spec is not
nil, compile changes function-spec's defmition to be the compiled function
object; the returned value is function-spec.

See the function fdefine in Reference Guide to Symbolics-lisp.

uncompile {unction-spec Function
If function-spec is not defined as an interpreted function and it has a
:previous-expr-definition property, then uncompile restores the function
cell from the value of the property. (Otherwise, uncompile does nothing
and returns "Not compiled".) This "undoes" the effect of compile. See
the function undefun in Reference Guide to Symbolics-lisp.

Although all these methods call the compiler and produce compiled function objects,
they are by no means equivalent. For example, using compiler:compile-file to
compile a source file of canonical type :lisp converts it into a binary file, with a
canonical file type of :bin. Compiling the source file has no effect on your Lisp
environment. Compiling a top-level form in an editor buffer, using a command like
Compile Region (c-sh-C) or Compile Buffer (M-X), creates a compiled function object
in memory but does not write an object code file on disk. Compiling a top-level form
in an editor buffer does cause some side effects on the Lisp environment.

The most essential difference, however, between compiling a source file and
compiling the same code in an editor buffer is this: When you compile a file, most
function specs are not defined and most forms (except those within
eval-when (compile) forms) are not evaluated at compile time. Instead the
compiler puts instructions into the binary file that causes evaluation to occur at load
time.

Loading a compiled code file does not differ substantially from loading its associated
source file, except that the functions defined in the binary file are defined as
compiled functions instead of interpreted functions. When you load a source file that
contains defun forms, you define the function specs named in the forms to be those
functions.

Sometimes you might want to put things in the compiled code file that are not
meant merely to be translated into binary form. Top-level macro definitions fall into
this category. The macros must actually get defined within the compiler in order for
the compiler to be able to expand them at compile time. Compiler declarations also
fall into this category.

320

Program Development Utilities March 1985

321

March 1985 The Compiler

28. Compiler Warnings Database

Compiler warnings are kept in an internal database. Several functions and editor
. commands allow you to inspect and manipulate this database in various ways.

The database of compiler warnings is organized by pathname; warnings that were
generated during the compilation of a particular file are kept together, and this body
of warnings is identified by the generic pathname of the file being compiled. Any
warnings that were generated while compiling some function not in any fue (for
example, by using the compile function on some interpreted code) are stored under
the pathname nil. For each pathname, the database has entries, each of which
associates the name of a function (or a flavor) with the warnings generated during
its compilation.

The database starts out empty when you cold boot. Whenever you compile a file,
buffer, or function, the warnings generated during its conipilation are entered into
the database. If you recompile a function, the old warnings are removed, and any
new warnings are inserted. If you get some warnings, fix the mistakes, and
recompile everything, the database becomes empty again.

Warnings are printed out as well as stored in the database. If the value of the
special variable suppress-compiler-warnings is not nil, warnings are not printed,
although they are still stored in the database.

The database has a printed representation. print-compiler-warnings produces this
printed representation from the database, and compiler:load-compile-warnings
updates the database from a saved printed representation.

print-compiler-warnings &optional files (stream standard-output) Function
file-node-message function-node-message
anonymous-function-node-message

Prints out the compiler warnings database. If files is nil (the default), it
prints the entire database. Otherwise, files should be a list of generic
pathnames, and only the warnings for the specified files are printed. (nil
can be a member of the list, too, in which case warnings for functions not
associated with any file are also printed.) The output is sent to stream, which
you can use this to send the results to a file.

compiler:load-compiler-warnings file &optional Function
(flush-old-warnings t)

Updates the compiler warnings database. file should be the pathname of a
file containing the printed representation of the compiler warnings related to
the compilation of one or more files. If flush-oLd-warnings is t (the default),
any existing warnings in the ",database for the fues in question are completely
replaced by the warnings in file. If flush-old-warnings is nil, the warningS
in file are added to those already in the database.

322

Program Development Utilities March 1985

The printed representation of a set of compiler warnings is sometimes stored in a
file. You can create such a file using print-compiler-wamings, but it is usually
created by invoking make-system with the :batch option. The default type for
such files is CW ARNS.

Several Zmacs commands manipulate the compiler warnings database.
Compiler Warnings (r\-X)

Creates the compiler warnings buffer (called
Compi ler-Harnings-l) if it does not exist, puts all outstanding
compiler warnings in that buffer, and switches to that buffer.
You can view the compiler warnings by scrolling around and doing
text searches through them using Edit Compiler Warnings (r\-x).

Edit Compiler Warnings (r\-X)
Prompts you with the name of each file mentioned in the
database, allowing you to edit the warnings for that file. It then
splits the Zmacs frame into two windows: the upper window
displays a warning message and the lower one displays the source
code whose compilation caused the warning. After you have
finished editing each function, c-. gets you to the next warning:
the top window scrolls to show the next warning and the bottom
window displays the function associated with this warning.
Successive c-. s take you through all of the warning messages for
all of the files you specified. When you are done, the last c-.
puts the frame back into its previous configuration.

Edit File Warnings (r\-X)
Asks you for the name of the file whose warnings you want to
edit. You can give either the source file or the compiled file.
Only warnings for this file are edited. If the database does not
have any entries for the file you specify, the command prompts
you for the name of a file that contains the warnings, in case you
know that the warnings are stored in another file.

Load Compiler Warnings (r\-X)
Loads a file containing compiler warning messages into the
warnings database. It prompts for the name of a file that
contains the printed representation of compiler warnings. It
always replaces any warnings already in the database.

323

March 1985 The Compiler

29. Controlling Compiler Warnings

29.1 Compiler Style Warnings

The compiler performs style checking on all forms. Style checking is implemented by
the compiler:style-checker property on a symbol; the value of the property is
called on all forms whose car is that symbol, except those immediately enclosed in
inhibit-style-warnings. Obsolete function warnings are also performed by means
of the style-checking mechanism.

inhibit-style-warnings form Macro
Prevents the compiler from performing style-checking on the top level of
form; style-checking will still be done on the arguments of form.

The following code warns you about the obsolete function explode, since
inhibit-style-warnings applies only to the top level of the form inside it, in
this case, to the setq.
Right:

(inhibit-style-warnings (setq bar (explode faa»)

The following code, on the other hand, does not warn that explode is an
obsolete function:
Wrong:

(setq bar (inhibit-style-warnings (explode faa»)

By setting the compile-time value of inhibit-style-warning-switch you can enable
or disable some of the warning messages of the compiler. The compile-time value of
obsolete-function-warning-switch enables or disables obsolete-function warnings in
particular .

compiler:make-obsolete spec reason &optional (type 'defun) Special Form
compiler:make-obsolete is a special form that declares a function, flavor, or
structure to be obsolete; code that calls an obsolete definition generates a
compiler warning. It is useful for marking as obsolete some Maclisp functions
that exist in Zetalisp but should not be used in new programs, or for
reminding users that some function is being phased out.

spec is the definition to be made obsolete and is not evaluated. reason is
evaluated and is the warning or explanation to be printed when the obsolete
definition is called. type, the optional third argument, is the definition-type of
the object declared obsolete and is not evaluated. Its default value is defun
when no type is specified. compiler:make-obsolete recognizes three
definition-types: defun, defflavor, and defstruct.

324

Program Development Utilities March 1985

compiler:make-obsolete with a third argument of defstruct makes the
structure obsolete as well as all of its accessor functions.
compiler:make-ob80lete with a third argument of demavor makes
obsolete both the flavor and its outside accessible instance variables.

An attempt to create a new flavor with an obsolete flavor as an included or
component flavor generates a compiler warning. Likewise, creating a new
structure with an obsolete structure as an included structure also generates a
warning.

compiler:make-message-obsolete message-name format-string Special Form
Allows you to generate compiler warnings about obsolete message names.
The first argument, message-name, is the obsolete message name. The
second argument, format-string, is the warning to be printed. If the string
contains the "S format directive, it will be replaced by the object that was
sent the message.

Example:

(compiler:make-message-obsolete :clear-screen
"You have sent the message :ClEAR-SCREEN to the object -So
This name is obsolete. The new name for this message is
: CLEAR-WINDOW. Please update your code.")

29.2 Function-referenced-but-never-defined Warnings

Normally, the compiler notices whenever any function x calls any other function y; it
takes note of all these uses, and then warns you at the end of the compilation if
function y got called but was neither defined nor declared (by
compiler:function-defined).

The compiler uses a set of variables and functions to keep track of which functions
have been defined and which have been referenced. These are the basis for the
messages "FOO was defined but never referenced" that occur during compiling.

sys:file-locaI-declarations Variable
sys:file-local-declarations stores global declarations valid for the entire
compilation. Since it can get fairly large, it is implemented as a hash table
(or nil). The symbol being declared is the key, and the value is a property
list of declarations and values. The default value is nil.

compiler:functions-defined Variable
compiler:functions-defined is a hash table of all functions defmed or nil, if
none has been defined yet.

325

March 1985 The Compiler

compiler:functions-referenced Variable
compiler:functions-referenced is a hash table of functions referenced but
not defined. Each entry is an alist of «generic-pathname> . <by-whom».
In this way warnings can be put into the appropriate file when this variable
is processed at the end of a compilation.

compiler:function-defined {spec Function
compiler:function-defined tells the compiler that the function {spec has
been defined (by putting it into the hash table in
compiler:functions-defined).

*expr, *lexpr, and *fexpr are the Maclisp equivalents of
compiler:function-defined.

*expr &rest functions Special Form
Declares each function spec in the list of functions to be the name of a
function. In addition it prevents these functions from appearing in the list of
functions referenced but not defined, which appears at the end of the
compilation. Provided for Maclisp compatibility.

*lexpr &rest functions Special Form
Declares each function spec in the list of functions to be the name of a
function. In addition it prevents these functions from appearing in the list of
functions referenced but not defined that is printed at the end of the
compilation. Provided for Maclisp compatibility.

*fexpr &rest functions Special Form
Declares each function spec in the list of functions to be the name of a
special form. In addition it prevents these names from appearing in the list
of functions referenced but not defined that is printed at the end of the
compilation. Provided for Maclisp compatibility.

compiler:file-declare thing declaration value Function
compiler:file-declare enters a declaration in the table
sys:file-locaI-declarations for the remaining extent of the compilation
environment.

(compiler:file-declare 'foo 'special t)

compiler:file-declaration thing declaration Function
compiler:file-declaration looks up a declaration in the table
sys:fil~locaI-declarations. It returns the declaration when thing is a
declaration of type declaration and nil otherwise.

compiler:function-referenced what &optional (by Function
compiler:default-warning-function)

compiler:function-referenced is useful for requesting compiler warnings in

326

Program Development Utilities March 1985

certain esoteric cases. For example, sometimes the compiler has no way of
telling that a certain function is being used. Suppose that instead of x's
containing any forms that call y, x simply stores y away in a data structure
somewhere, and someplace else in the program that data structure is accessed
and funcall is done on it. In this case the compiler cannot see that this is
going to happen; the result is that it cannot note the function usage and
hence cannot create a warning message. In order to make such warnings
happen, you can explicitly call the function compiler:function-referenced
at compile-time.

what is a symbol that is being used as a function. by can be any function
spec. compiler:function-referenced must be called at compile time while a
compilation is in progress. It tells the compiler that the function what is
referenced by by. When the compilation is finished, if the function what has
not been defined, the compiler issues a warning to the effect that by referred
to the function what, which was never defined.

29.2.1 Overriding Variable-defined-but-never-referenced Warnings

Sometimes functions take arguments that they deliberately do not use. Normally
the compiler warns you if your program binds a variable that it never references. In
order to disable this warning for variables that you know you are not going to use,
you can do one of two things.

• You can name the variables ignore or ignored. The compiler does not
complain if a variable of one of these names is not used. Furthermore, you
can have more than one variable in a lambda-list that has one of these names.

• You can simply use the variable for effect (ignoring its value) at the front of
the function. This has the advantage that arglist will return a more
meaningful argument list for the function, rather than returning something
with ignores in it. Example:

(defun the-function (list fraz-name fraz-size)
fraz-size ; This argument is not used.
...)

• You can use the variable as an argument to the ignore function.

(defun the-function (list fraz-name fraz-size)
(ignore fraz-size)
...)

327

March 1985 The Compiler

30. Compiler Source-level Optimizers

An optimizer can be used to transform code into an equivalent but more efficient
form that can be compiled better. For example, (eq obj nil) is transformed into
(null obj), which can be compiled better.

Do not use optimizers to define new language features, because they take effect only
in the compiler; the interpreter (that is, the evaluator) does not know about
optimizers. So an optimizer should not change the effect of a form; it should
produce another form that does the same thing, possibly faster or with less memory.
If you want to actually change the form to do something else, you should use
macros.

compiler:add-optimizer target-function optimizer-name &rest Special Form
optimized-into

Puts optimizer-name on target-function's optimizers list if it is not there
already. optimizer-name is the name of an optimization function, and
target-function is the name of the function calls that are to be processed.
Neither is evaluated.

(compiler:add-optimizer target-function optimizer-name optimize-into-l
optimize-into-2 ...) also remembers optimize-into-l, and so on, as names of
functions that can be called in place of target-function as a result of the
optimization.

328

Program Development Utilities M~ch 1985

329

March 1985 The Compiler

31. Files That Maclisp Must Compile .

Certain programs are intended to be run both in Maclisp and in Zetalisp. Their
source files need some special conventions. For example, all special declarations
must be enclosed in top-level declare forms, so that the Maclisp compiler sees them.
The main issue is that many Zetalisp functions and special forms do not exist in
Maclisp.

The n#Q" sharp-sign reader macro causes the object that follows it to be visible only
when compiling for Zetalisp. The sharp-sign reader macro #M causes the following
object to be visible only when compiling for Maclisp. These work both on
subexpressions of the objects in the file, and at top level in the file. To
conditionalize top-level objects, however, it is better to put the macros if-for-lispm
and if-for-maclisp around them. (You can only put these around a single object.)
The #Q sharp-sign reader macro cannot do this, since it can be used to
conditionalize any Lisp object, not just a top-level form.

To allow a file to detect what environment it is being compiled in, the following
macros are provided:

if-for-lispm &rest forms Macro
Seen at the top level of the compiler, forms is passed to the compiler top level
if the output of the compiler is a compiled code file intended for Zetalisp. If
the Zetalisp interpreter sees this it evaluates forms (the macro expands into
forms).

if-for-maclisp &rest forms Macro
Seen at the top level of the compiler, forms is passed to the compiler top level
if the output of the compiler is a compiled code file intended for Maclisp (for
example, if the compiler is COMPLR). If the Zetalisp interpreter sees this it
ignores it (the macro expands into nil).

if-for-maclisp-else-lispm maclisp-form lispm-form Macro
When (if-for-maclisp-else-lispm forml form2) is seen at the top level of the
compiler, forml is passed to the compiler top level if the output of the
compiler is a compiled code file intended for Maclisp; otherwise form2 is
passed to the compiler top level.

if-in-lispm &rest forms Macro
In Zetalisp, (if-in-lispm forms) causes forms to be evaluated; in Maclisp,
forms is ignored.

if-in-maclisp &rest forms Macro
In Maclisp, (if-in-macIisp forms) causes forms to be evaluated; in Zetalisp,
forms is ignored.

330

Program Development Utilities March 1985

When you have two definitions of one function, one conditionalized for one machine
and one for the other, put them next to each other in the source file with the
second "(defun)" indented by one space, and the editor will put both function
definitions on the screen when you ask to edit that function.

In order to make sure that those macros are defined when reading the file into the
Maclisp compiler, you must make sure the file starts with a prelude, which should
look like:

(declare (cond «not (status feature lispm»
(load 'IAI: lISPH2; CONDITI»»

This does nothing when you compile the program on the Symbolics Lisp Machine.
If you compile it with the Maclisp compiler, it loads definitions of the above macros,
so that they will be available to your program. The form (status feature lispm) is
generally useful in other ways; it evaluates to t when evaluated on the Symbolics
Lisp Machine and to nil when evaluated in Maclisp.

331

March 1985 .The Compiler

32. Putting Data in Compiled Code Files

A compiled code file can contain data rather than a compiled program. This can be
useful to speed up loading of a data structure into the machine, as compared with
reading in printed representations. Also, certain data structures, such as arrays, do
not have a convenient printed representation as text, but can be saved in compiled
code files.

In compiled programs, the constants are saved in the compiled code file in this way.
The compiler optimizes by making constants that are equal become eq when the
file is loaded. This does not happen when you make a data file yourself; identity of
objects is preserved. Note that when a compiled code file is loaded, objects that were
eq when the file was written are still eq; this does not normally happen with text
files.

The following types of objects can be represented in compiled code files:

Symbols
Numbers of all kinds
Lists
Strings
Arrays of all kinds
Instances (for example, hash tables)
Compiled function objects

When an instance is put (dumped) into a compiled code file, it is sent a :fasd-fonn
message, which must return a Lisp form that, when evaluated, will recreate the
equivalent of that instance. This is because instances are often part of a large data
structure, and simply dumping all of the instance variables and making a new
instance with those same values is unlikely to work. Instances remain eq; the
:fasd-fonn message is sent only the first time a particular instance is encountered
during writing of a compiled code file. If the instance does not accept the
:fasd-fonn message, it cannot be dumped.

sys:dump-forms-to-file filename forms &optional file-attribute-list Function
sys:dump-fonns-to-file writes data to a file in binary form. forms-list is a
list of Lisp forms, each of which is dumped in sequence. It dumps the forms,
not their results. The forms are evaluated when you load the file.

For example, suppose a is a variable bound to any Lisp object, such as a list
or array. The following example creates a compiled code file that recreates
the variable a with the same value:

(sys:dump-forms-to-file "f:>foo>aval"
(list '(setq a ',a»)

332

Program Development Utilities March 1985

For the purposes of understanding what this function does, you can consider
that it is the same as the following:

(defun sys:dump-forms-to-file (file forms)
(with-open-file (s file ':direction ':output)

(dolist (f forms)
(print f s»»

The real definition writes a binary fue so it will load faster. It can also dump
arrays, which you cannot write to a Lisp source fIle.

attribute-list supplies an optional attribute list for the resulting compiled code
fIle. It has basically the same result when loading the binary fue as the fIle
attribute list does for compiler:compile-flle. Its most important application
is for controlling the package that the fue is loaded into.

(sys:dump-forms-to-file "foo" forms-list '(:package "user"»

sys:dump-forms-to-file always puts a package attribute into the binary fIle
it writes. If you do not specify the attribute-list argument, or if attribute-list
does not contain a :package attribute, the function uses the user package.
This is to ensure that package prefIxes on symbols are always interpreted
when they are loaded as they were intended when the fIle was dumped.

The file-attribute-list argument can be used to store useful information (such
as "headers" for special data structures) in the fue's attribute list. The
information can then be retrieved from the attribute list with
fs:pathname-attribute-list, without reading the rest of the fIle.

333

March 1985 Index

Index

#M sharp-sign reader macro 329
#0 sharp-sign reader macro 329

1 1 1
One Window (c-X 1) Zmacs command 65

2 2 2
Two Windows (c-X 2) Zmacs command 65

3 3 3
View Two Windows (c-X 3) Zmacs command 65

4 ,4 4
Modified Two Windows (c-X 4) Zmacs command 65

, ,
Set Comment Column (c-X ;) Zmacs command 23

A A A
Exiting From the Debugger:

sys:

Getting Information
Finding Out

Send mail
Summary of Compiler

Display status of
Select

complier:

:around
Designing the

sl:
sl:

ABORT 98
Abort 261
ABORT Debugger command 264, 271
abort flavor 129
Abort Patch (m-X) 243
About a System 249
About Existing Code 35
about patch 242
Actions on Code In a Zmacs Buffer 71
Active patches 238, 242
active processes 303
Activity command 9
Adding New Keywords to make-system 227
Adding New Options to defsystem 214
add-optimizer special form 327
Add Patch Changed Definitions (m-X) 241

, Add Patch Changed Definitions of Buffer (m-X) 241
Add Patch (m-X) 240
Add region to patch file 238
Advice 284
Advice 283
Advice to functions 281
advlse-1 function 283
advised-functions variable 283
advise special form 281
advise-within special form 285
Advising a Function 281
AdVising One Function Within Another 285

334

Program Development Utilities

[Break
[Cond

[Cond break
[Print

Summary of Debugging
Programming

Select
Macro Expand Expression

Clearing the Trap-an-exit Flag for the Current and
Setting the Trap-on-exit Flag for the Current and

Advising One Function Within

:any-tyl method of tv:
tv:

Function
Display status of window

Display status of
dbg:

Quick

Ignored
patch-atom

Bit-save
Inspecting an

Mouse cursor as an
The Basic

The

Reparse
Update

File

after] trace menu item 92
after] trace menu item 92
after] trace menu item 92, 98
after] trace menu item 92
Aids 273
Aids for Flavors and Windows 141
Aligning code 26

March 1985

Aligning Code: Program Development Tools and
Techniques 26

All Buffers As Tag Table (m-X) Zmacs command 57
All (m-X) Zmacs command 100
All Outer Frames 266
All Outer Frames 266
Anonymous module 199
Another 285
:any-ty1 method of tv:any-tyl-mixln 129
any-tyl-mlxln 129
any-tyl-mlxln flavor 129
applyhook 290
applyhook function 291
applyhook variable 291
apropos function 38
Apropos (m-X) Zmacs command 41
area 303
areas 303
arg function 267
Arglist (c-sh-A) Zmacs command 43
argUst function 43
argUst variable 98, 276
:arg option for trace 92
:arg option to trace 278
:argpdl option for trace 92
:argpdl option to trace 2n
[ARGPDL] trace menu item 92
:argpdl trace Option 2n
Argument lists 43
Argument Lists: Program Development Tools and

Techniques 43
arguments 324
argument to :patchable option for defsystem 236
:around Advice 284
array 116, 129
array 299
Arrays In compiled code files 331
arrow 297
Arrow Window 116
Arrow Window: Interaction, Processes, and the

Mouse 129
Atom Word Mode (m-X) Zmacs command 12
Attribute List (m-X) Zmacs command 10
Attribute List (m-X) Zmacs command 10
Attribute lists (in files) 10
Attribute Lists: Program Development Tools and

Techniques 10
Attributes (of buffers) 10
[Attributes] System menu item 141
Auto Fill Mode (m-X) Zmacs command 12

March 1985

B
Set

Examining Stack Frames with Debugger

Set
The

:send-command method of Igp:
:aend-coordlnatea method of Igp:

Igp:
al:

[Break
[Cond

[Cond break
[Print

Before You

Rebound Variable

[Cond

[Cond

Debugger Commands for Dynamic

Compiling Code In a Zmacs
Summary of Complier Actions on Code in a Zmacs

Select Previous
Select

Compile Changed Definitions Of
Evaluate Changed Definitions Of

Add Patch Changed Definitions of
Compile

B
Backspace (m-X) Zmacs command 10
Backtrace 264. 271
Backtrace Commands 262
Backtrace information 268
Backtrace of the call stack 268
Backward Kill Sexp (c-m-RUBOUT) Zmacs

command 60
Balancing Parentheses 26

335

Index

B

Balancing Parentheses: Program Development Tools
and Techniques 26

Base 10
Base (m-X) Zmacs command 10
Basic Arrow Window 116
baslc-Igp-stream 124
baslc-Igp-stream 124
baslc-Igp-stream flavor 124
batch-mode-p variable 229
:batch option for make-system 79. 222
Beep (c-G) Zmacs command 59
before] trace menu l1em 92
before] trace menu item 92
before] trace menu item 92. 98
before] trace menu l1em 92
Before You Begin: Program Development Tools and

Techniques 7
Begin: Program Development Tools and

Techniques 7
Bindings During Evaluation 260
bin file dumper 309. 316
bin file type 318
Bit-save array 116. 129
:bllnker-p init option for tv:sheet 116
Blinkers 133
:both option for trace 92
:both option to trace 278
[Break after] trace menu l1em 92
break after] trace menu l1em 92. 98
[Break before] trace menu l1em 92
break before] trace menu l1em 92. 98
BREAK Inspector command 300
breakon function 98
:break option for trace 92. 98
:break option to trace 276
Breakpoints 98
Breakpoints and Stepping Through Compiled

Code 267
Breakpoints: Program Development Tools and

Techniques 98
break special form 98
:break trace Option 276
Brief Documentation (c-sh-O) Zmacs command 39.

42
:broken system status 251
Buffer 70
Buffer 71
Buffer (c-m-L) Zmacs command 59
Buffer (c-X B) Zmacs command 59
Buffer (m-sh-C) Zmacs command 70
Buffer (m-sh-E) Zmacs command 75
Buffer (m-X) 241
Buffer (m-X) Zmacs command 70

336

Program Development Utilities

c

Edit Changed Definitions Of
Evaluate

Evaluate And Replace Into
Evaluate Into

Insert
List Changed Definitions Of

Copying
Multiple

Attributes (of
Copying

Select All
Multiple

Sending a

Select Buffer (c-X

Indent For Comment

Edit
List

Multiple Edit
Multiple List

Debugger Commands That
Backtrace of the

Entering the Debugger by

Display Directory (c-X

Find File (c-X
Beep

Identifying

Add Patch
Compile

Edit
Evaluate

List
Compile

Evaluate

Add Patch
Edit

List

c

March 1985

Buffer (m-X) Zmacs command 56
Buffer (m-X) Zmacs command 75
Buffer (m-X) Zmacs command 75
Buffer (m-X) Zmacs command 75
Buffer (m-X) Zmacs command 63
Buffer (m-X) Zmacs command 56
buffers 63
buffers 65
buffers) 10
Buffers and Files: Program Development Tools and

Techniques 63
Buffers As Tag Table (m-X) Zmacs command 57
Buffers: Program Development Tools and

Techniques 65
bug function 264
Bug mail 264, 271
Bug Report in the Debugger 264
Bug reports 264, 271
:bug-reports Option for defsystem 196
B) Zmacs command 59

(c-; or m-;) Zmacs command 23
c-? Zmacs minibuffer command 8
c-A Debugger command 80, 271
Calculation Module for the Sample Program 147
Callers 44
Callers (m-X) Zmacs command 44
Callers (m-X) Zmacs command 38, 44
Callers (m-X) Zmacs command 44
Callers (m-X) Zmacs command 44
Callers: Program Development Tools and

Techniques 44

c

Call Last Kbd Macro (c-X E) Zmacs command 64
Call Other Systems 264
call stack 268
:case method combination 133
Causing an Error 255
c-B Debugger command 264, 271
c-B Stepper command 94
c-O) Zmacs command 45
c-E Debugger command 80, 264, 271
c-E Stepper command 94
c-F) Zmacs command 9
(c-G) Zmacs command 59
Changed code 56
Changed Code: Program Development Tools and

Techniques 56
Changed Definitions (m-X) 241
Changed Definitions (m-X) Zmacs command 70
Changed Definitions (m-X) Zmacs command 56
Changed Definitions (m-X) Zmacs command 75
Changed Definitions (m-X) Zmacs command 56
Changed Definitions Of Buffer (m-sh-C) Zmacs

command 70
Changed Definitions Of Buffer (m-sh-E) Zmacs

command 75
Changed Definitions of Buffer (m-X) 241
Changed Definitions Of Buffer (m-X) Zmacs

command 56
Changed Definitions Of Buffer (m-X) Zmacs

command 56

March 1985

337

Index

:change-of-slze-or-marglns method of tv:sheel 116
Changing the Status of a Patchable System 251

Special Characters Recognized by the Inspector 300
c-HELP Debugger command 80. 264. 271

:function option for tv: choose-variable-values 133
tv: choose-variable-values function 126. 133

Choose-variable-values window 126. 129
c-L Debugger command 80. 264. 271
Clearing the Trap-on-exit Flag for the Current and All

Outer Frames 266
[Clear] Inspector menu item 298

Mouse clicks 129
Inspecting a closure 299

Kill Comment (c-m-;) Zmacs command 23
c-m-A Debugger command 264. 271
c-m-B Debugger command 264. 271
c-M Debugger command 264. 271
c-m-F Debugger command 264. 271
c-m-H Debugger command 264. 271

Mark Definition (c-m-H) Zmacs command 60
Kill Sexp (c-m-K) Zmacs command 60

c-m-L Debugger command 264. 271
Select Previous Buffer (c-m-L) Zmacs command 59

c-m-N Debugger command 264. 271
c-m-P Debugger command 264. 271

Indent Sexp (c-m-Q) Zmacs command 26
c-m-R Debugger command 80. 264. 271

Backward Kill Sexp (c-m-RUBOUT) Zmacs command 60
c-m-S Debugger command 264. 271

Move To Previous Point (c-m-SPACE) Zmacs command 59
c-m-SUSPEND 80

Indent For Lisp (TAB or c-m-TAB) Zmacs command 26
c-m-U Debugger command 264. 271
c-m-V Debugger command 264. 271

Scroll Other Window (c-m-V) Zmacs command 65
c-m-W Debugger command 80. 264. 271
c-m-X Debugger command 264. 271
c-m-Y input editor command 77

Indent Region (c-m-\) Zmacs command 26
c-N Debugger command 80. 264. 271
c-N Stepper command 94

Aligning code 26
Changed code 56

Compiling code 69. 70
Compiling Lisp Code 70

Debugger Commands for DynamiC Breakpoints and Stepping Through Compiled

Evaluating
Evaluating Lisp

Finding Out About Existing
Writing and Editing

Examining a Compiled
Arrays in compiled

Compiled code objects in compiled
File Types of Lisp Source and Compiled

Instances in compiled
Lists in compiled

Numbers in compiled
Putting Data in Compiled

Symbols in compiled
Tools for Compiling

Compiling
Summary of Compiler Actions on

Code 267
code 69. 75. 94
Code 75
Code 35
Code 7
Code File 300
code files 331
code files 331
Code Files 318
code files 331
code files 331
code files 331
Code Files 331
code files 331
Code From the Editor Into Your World 316
Code in a Zmacs Buffer 70
Code In a Zmacs Buffer 71

338

Program Development Utilities March 1985

Inspecting a compiled code object 299
Compiled code objects in compiled code files 331

Aligning Code: Program Development Tools and
Techniques 26

Commenting Out Code: Program Development Tools and
Techniques 83

Editing Code: Program Development Tools and
Techniques 56

Identifying Changed Code: Program Development Tools and
Techniques 56

Set Comment Column (c-X ;) Zmacs command 23
Set Fill Column (c-X F) Zmacs command 12

:case method combination 133
:daemon method combination 113, 116, 121

Edit Combined Methods (m-X) Zmacs command 142
List Combined Methods (m-X) Zmacs command 142

ABORT Debugger command 264, 271
Atom Word Mode (m-X) Zmacs command 12

Auto Fill Mode (m-X) Zmacs command 12
Backward Kill Sexp (c-m-RUBOUT) Zmacs command 60

Beep (c-G) Zmacs command 59
BREAK Inspector command 300

Brief Documentation (c-sh-O) Zmacs command 39, 42
c-? Zmacs minibuffer command 8

c-A Debugger command 80, 271
Call Last Kbd Macro (c-X E) Zmacs command 64

c-B Debugger command 264, 271
c-B Stepper command 94

c-E Debugger command 80, 264, 271
c-E Stepper command 94

c-HELP Debugger command 80, 264, 271
c-L Debugger command 80, 264, 271

c-m-A Debugger command 264, 271
c-m-B Debugger command 264, 271

c-M Debugger command 264, 271
c-m-F Debugger command 264, 271
c-m-H Debugger command 264, 271
c-m-L Debugger command 264, 271
c-m-N Debugger command 264, 271
c-m-P Debugger command 264, 271
c-m-R Debugger command 80, 264, 271
c-m-S Debugger command 264, 271
c-m-U Debugger command 264, 271
c-m-V Debugger command 264, 271
c-m-IJ Debugger command 80, 264, 271
c-m-X Debugger command 264, 271

c-m-Y input editor command 77
c-N Debugger command 80, 264, 271

c-N Stepper command 94
Compile Buffer (m-X) Zmacs command 70

Compile Changed Definitions (m-X) Zmacs command 70
Compile Changed Definitions Of Buffer (m-sh-C) Zmacs

Compile File (m-X) Zmacs
Compile Region (c-sh-C) Zmacs

Compile Region (m-X) Zmacs
Compiler Warnings (m-X) Zmacs

Compile System
COMPLETE Zmacs minibuffer

c-P Debugger
c-R Debugger
c-S Debugger

c-sh-C Zmacs

command 70
command 73
command 70
command 316
command 79, 321
command 217
command 8
command 80, 264, 271
command 80, 264, 271
command 264, 271
command 316

339

March 1985 Index

c-sh-P Debugger command 264. 271
c-T Debugger command 264. 271

c-u Stepper command 94
C-X Debugger command 271

c-X Stepper command 94
C-Z Inspector command 300

Delnstall Macro (m-X) Zmacs command 64
Describe Flavor (m-X) Zmacs command 141

Describe Variable At Point (c-sh-V) Zmacs command 39
Dired (m-X) Zmacs command 45

Disassemble (m-X) Zmacs command 104
Display Directory (c-X c-D) Zmacs command 45
Down Comment Line (m-N) Zmacs command 23

Edit Callers (m-X) Zmacs command 44
Edit Changed Definitions (m-X) Zmacs command 56

Edit Changed Definitions Of Buffer (m-X) Zmacs command 56
Edit Combined Methods (m-X) Zmacs command 142
Edit Complier Warnings (m-X) Zmacs command 79. 321

Edit Definition (m-.) Zmacs command 40. 141. 142
Edit File Warnings (m-X) Zmacs command 321

Edit Methods (m-X) Zmacs command 65. 142
Electric Shift Lock Mode (m-X) Zmacs command 12

END Zmacs minibuffer command 8
Evaluate And Replace Into Buffer (m-X) Zmacs command 75

Evaluate Buffer (m-X) Zmacs command 75
Evaluate Changed Definitions (m-X) Zmacs command 75

Evaluate Changed Definitions Of Buffer (m-sh-E) Zmacs

Evaluate Into Buffer (m-X) Zmacs
Evaluate Minibuffer (m-ESCAPE) Zmacs

Evaluate Region (c-sh-E) Zmacs
Fill Long Comment (m-X) Zmacs

Find File (c-X c-F) Zmacs
Find Unbalanced Parentheses (m-X) Zmacs

Function Apropos (m-X) Zmacs
HELP Debugger

HELP Stepper
HELP Zmacs

HELP Zmacs minibuffer
Incremental Search (c-S) Zmacs

Indent For Comment (c-; or m-;) Zmacs
Indent For Lisp (TAB or c-m-TAB) Zmacs

Indent New Comment Line (m-L I NE) Zmacs
Indent New Line (L I NE) Zmacs

Indent Region (c-m-\) Zmacs
Indent Sexp (c-m-Q) Zmacs

Insert Buffer (m-X) Zmacs
Insert File (m-X) Zmacs

Inspect
Install Macro (m-X) Zmacs

Install Mouse Macro (m-X) Zmacs
Jump To Saved Position (c-X J) Zmacs

Kill Comment (c-m-;) Zmacs
Kill Sexp (c-m-K) Zmacs
Lisp Mode (m-X) Zmacs

List Callers (m-X) Zmacs
List Changed Definitions (m-X) Zmacs

List Changed Definitions Of Buffer (m-X) Zmacs
List Combined Methods (m-X) Zmacs

List Matching Lines (m-X) Zmacs
List Matching Symbols (m-X) Zmacs

List Methods (m-X) Zmacs
Load Compiler Warnings (m-X) Zmacs

command 75
command 75
command 75
command 75
command 23
command 9
command 26
command 41
command 264. 271
command 94
command 7. 64
command 8
command 57
command 23
command 26
command 23
command 26
command 26
command 26
command 63
command 63
command 295
command 64
command 64
command 59
command 23
command 60
command 12
command 38. 44
command 56
command 56
command 142
command 57
command 38
command 142
command 79. 321

340

Program Development Utilities

Load File (m-X) Zmacs
Load System

Long Documentation (m-sh-O) Zmacs
m-< Debugger
m-> Debugger

Macro Expand Expression All (m-X) Zmacs
Macro Expand Expression (c-sh-M) Zmacs

Mark Definition (c-m-H) Zmacs
Mark Whole (c-X H) Zmacs

m-B Debugger
m- I Debugger
m-L Debugger
m-N Debugger

Modified Two Windows (c-X 4) Zmacs
Move To Previous Point (c-m-SPACE) Zmacs

m-P Debugger
m-S Debugger

Multiple Edit Callers (m-X) Zmacs
Multiple Ust Callers (m-X) Zmacs

m-X Debugger
m-V Input editor

Name Last Kbd Macro (m-X) Zmacs
One Window (c-X 1) Zmacs

Open Get Register (c-X G) Zmacs
Other Window (c-X 0) Zmacs

Print Modifications (m-X) Zmacs
Push Pop Point Explicit (m-SPACE) Zmacs

Put Register (c-X X) Zmacs
Query Replace (m-~) Zmacs

Quick Argllst (c-sh-A) Zmacs
Quit (c-Z) Zmacs

Reparse Attribute Ust (m-X) Zmacs
Replace (c-~) Zmacs

RESUME Debugger
RETURN Zmacs mlnlbuffer

Reverse Search (c-R) Zmacs
Save Position (c-X S) Zmacs

Save Region (m-W) Zmacs
Scroll Other Window (c-m-V) Zmacs

Select Activity
Select All Buffers As Tag Table (m-X) Zmacs

Select Buffer (c-X B) Zmacs
Select Previous Buffer (c-m-L) Zmacs

Select System As Tag Table (m-X) Zmacs
Set Backspace (m-X) Zmacs

Set Base (m-X) Zmacs
Set Comment Column (c-X ;) Zmacs

Set Fill Column (c-X F) Zmacs
Set Fonts (m-X) Zmacs

Set Key (m-X) Zmacs
Set Lowercase (m-X) Zmacs

Set Noflll (m-X) Zmacs
Set Package (m-X) Zmacs

Set Patch File (m-X) Zmacs
Set Pop Mark (c-SPACE) Zmacs

Set sleep time between updates Peek
Set Tab Width (m-X) Zmacs

Set Vsp (m-X) Zmacs
Source Compare Merge (m-X) Zmacs

Source Compare (m-X) Zmacs
SPACE Stepper

SPACE Zmacs minibuffer
Split Screen (m-X) Zmacs

command 73
command 217
command 39, 42
command 264, 271
command 264, 271
command 100
command 100
command 60
command 63
command BO, 264, 271
command 264, 267, 271
command 80, 264, 271
command 264,271
command 65
command 59
command 264,271
command 264, 271
command 44
command 44
command 264. 271
command 77
command 64
command 65
command 63
command 65
command 56
command 59
command 63
command 57
command 43
command 80
command 10
command 57
command 264. 271
command 8
command 57
command 59
command 60
command 65
command 9
command 57
command 59
command 59
command 57
command 10
command 10
command 23
command 12
command 10
command 64
command 10
command 10
command 10
command 10
command 59
command 303
command 10
command 10
command 56
command 56
command 94
command 8
command 65

March 1985

March 1985

s-sh-C Debugger
Swap Point And Mark (c-X c-X) Zmacs

Tags Query Replace (m-X) Zmacs
Tags Search (m-X) Zmacs

Trace (m-X) Zmacs
Two Windows (c-X 2) Zmacs

Up Comment Une (m-P) Zmacs
Update Attribute Ust (m-X) Zmacs

View Directory (m-X) Zmacs
View Two Windows (c-X 3) Zmacs

Where Is Symbol (m-X) Zmacs
Yank (c-Y) Zmacs

Yank Pop (m-Y) Zmacs
tr Dlred (c-X D) Zmacs

ESCAPE Inspector
Debugger

Debugger special
Examining Stack Frames with Debugger Backtrace

Inspector
Summary of Debugger

Debugger

Debugger
Debugger
Debugger
Debugger

Indent For
Kill
Set

Indent New
Down

Up
Fill Long

command 264, 271
command 59
command 57
command 57
command 92, 94
command 65
command 23
command 10
command 45
command 65
command 38
command 60
command 60
command 45
command 300
commands 271
commands 80
Commands 262
commands 298
Commands 271

341

Index

Commands for Dynamic Breakpoints and Stepping
Through Compiled Code 267

Commands for Information Display 265
Commands for Stack Manipulation 263
Commands That .Call Other Systems 264
Commands That Trap on Frame Exit 266
Comment (c-; or m-;) Zmacs command 23
Comment (c-m-;) Zmacs command 23
Comment Column (c-X ;) Zmacs command 23
Commenting Out Code: Program Development Tools

and Techniques 83
Comment Une (m-L I NE) Zmacs command 23
Comment Une (m-N) Zmacs command 23
Comment Une (m-P) Zmacs command 23
Comment (m-X) Zmacs command 23
Comments 23
Comments: Program Development Tools and

Techniques 23
Source Compare Merge (m-X) Zmacs command 56
Source Compare (m-X) Zmacs command 56

Files That Maclisp Must Compile 329
Compile Buffer (m-X) Zmacs command 70
Compile Changed Definitions (m-X) Zmacs

command 70
Compile Changed Definitions Of Buffer (m-sh-C)

Zmacs command 70
Debugger Commands for Dynamic Breakpoints and Stepping Through

Examining a
Arrays in

Compiled code objects in
File Types of Usp Source and

Instances in
Usts in

Numbers in
Putting Data in

Symbols in
Inspecting a

Compiled Code 267
Compiled Code File 300
compiled code files 331
compiled code files 331
Compiled Code Files 318
compiled code files 331
compiled code files 331
compiled code files 331
Compiled Code Files 331
compiled code files 331
compiled code object 299
Compiled code objects in compiled code files 331
Compiled function object 309
Compiled functions 69

complier: compile-file function 73, 307, 317
complier: complle-file-Ioad function 73, 318

342

Program Development Utilities

Function
How to Invoke the
Introduction to the

Optimizer feature of the
Stream

Structure of the
The

Summary of

Specifying

How the Stream

Controlling

Print
Update

The

Edit
Load

Tools for

Tools for

Tools for

Compile File (m-X) Zmacs command 73
compile-flavor-methods macro 133
compile function 307. 319
Compile-like transformations 214

March 1985

:complle-Ioad compound transformation 201
:complle-Ioad-Inlt Transformation of defsystem 211
:complle-Ioad transformation of defsystem 21 0
:complle Option for make-system 222
compiler 309. 315
Compiler 307
Compiler 307
compiler 327
compiler 309
Complier 309
Compiler 305
Compiler Actions on Code In a Zmacs Buffer 71
compller:add-optlmlzer special form 327
compller:complle-flle function 73. 307. 317
compller:complle-file-Ioad function 73. 318
Compile Region 316
Compile Region (c-sh-C) Zmacs command 70
Compile Region (m-X) Zmacs command 316
complier environments 329
compller:flle-declaratlon function 325
compller:flle-declare function 325
compller:functlon-deflned function 325
compller:functlon-referenced function 325
compller:functlons-deflned variable 324
compller:functlons-referenced variable 325
Complier Handles Top-level Forms 310
complier-let 310
compller:load-compller-wamlngs function 321
compller:make-message-obsolete special form 324
compller:make-obsolete special form 323
Complier Source-level Optlmlzers 327
Complier Style Warnings 323
Compiler Tools and Their Differences 316
compller:top-Ievel-fonn property 315
Compiler variables 324
Compiler warnings 65, 70, 79
Compiler Warnings 323
Compiler Warnings Database 321
compiler warnings database 321
compiler warnings database 321
Compiler Warnings Database: Program Development

Tools and Techniques 79
Compiler Warnings (m-X) Zmacs command 79. 321
Compiler Warnings (m-X) Zmacs command 79, 321
Compiler Warnings (m-X) Zmacs command 79, 321
Compile System command 217
:complle Transformation of defsystem 209
Compiling and Evaluating Usp 69
Compiling and Loading a File 73
Compiling code 69.70
Compiling Code From the Editor Into Your World 316
Compiling Code in a Zmacs Buffer 70
Compiling Files 317
Compiling Usp Code 70
Compiling Single Functions 318
COMPLETE Zmacs minibuffer command 8
Completion 8
Completion: Program Development Tools and

Techniques 8

March 1985

:complle-load

Signalling
Signalling

Manipulating the

Converting Lgp to Screen

Reverse Search

Quick Arglist
Compile Region

Brief Documentation
Evaluate Region

Macro Expand Expression

Describe Variable At Point
Set Pop Mark

Incremental Search

Clearing the Trap-on-exlt Flag for the
Setting the Trap-on-exlt Flag for the

Toggling the Trap-on-exlt Flag for the

Debugger functions to return values in
Examining the

Mouse

One Window
Two Windows

View Two Windows
Modified Two Windows
Set Comment Column

Select Buffer
Display Directory

Find File

343

Index

Complex transformations 214
:component-systems Option for defsystem 197
compound transformation 201
[Cond after] trace menu Item 92
[Cond before] trace menu item 92
[Cond break after] trace menu item 92. 98
[Cond break before] trace menu item 92. 98
[Conditional] trace menu Item 92
condHlon-blnd special form 133
condition flavor 133
Conditions 201
conditions 133
Conditions: Program Development Tools and

Techniques 133
:cond option for trace 92
:cond option to trace 276
:cond trace Option 276
ContrOlling Compiler Warnings 323
ContrOlling the Evaluation of Top-level Forms 314
ContrOlling the Format of trace Output 279
control stack 264. 271
Converting Lgp to Screen Coordinates 121
Coordinates 121
Copying buffers 63
Copying Buffers and Files: Program Development

Tools and Techniques 63
Copying files 63
c-P Debugger command 80. 264. 271
c-R Debugger command 80. 264. 271
Creating a File: Program Development Tools and

Techniques 9
Creating a logical host 217
Creating files 9
(c-R) Zmacs command 57
c-S Debugger command 264. 271
(c-sh-A) Zmacs command 43
(c-sh-C) Zmacs command 70
c-sh-C Zmacs command 316
(c-sh-D) Zmacs command 39. 42
(c-sh-E) Zmacs command 75
(c-sh-M) Zmacs command 100
c-sh-P Debugger command 264. 271
(c-sh-V) Zmacs command 39
(c-SPACE) Zmacs command 59
(c-S) Zmacs command 57
c-T Debugger command 264. 271
Current and All Outer Frames 266
Current and All Outer Frames 266
Current Frame 266
Current patch 242
Current stack frame 264. 271
current stack frame 267
Current Stack Frame In the Debugger 262
cursor as an arrow 297
c-u Stepper command 94
(c-X 1) Zmacs command 65
(c-X 2) Zmacs command 65
(c-X 3) Zmacs command 65
(c-X 4) Zmacs command 65
(c-X ;) Zmacs command 23
(c-X B) Zmacs command 59
(c-X c-D) Zmacs command 45
(c-X c-F) Zmacs command 9

344

Program Development Utilities

D

Swap Point And Mark

1'r Dired
Call Last Kbd Macro

Set Fill Column
Open Get Register

Mark Whole
Jump To Saved Position

Other Window

Save Position
Put Register

Start Kbd Macro
Swap Point And Mark (c-X

End Kbd Macro
Yank

Replace
Qui1

Compiler Warnings
Print compiler warnings

Update complier warnings
The Compiler Warnings

Putting

Entering the Debugger with the

c-Z in the
Display

Entering the
Entering the Display Debugger From the

Entering the Editor From the
Evaluating a Form in the

Examining the Current Stack Frame in the
Functions used Inside the

How to Use the
Sending a Bug Report in the

Exiting From the
Examining Stack Frames with

Entering the
ABORT

c-A
c-B
c-E

c-HELP
c-L
c-M

c-m-A

D

March 1985

(c-X c-X) Zmacs command 59
c-x Debugger command 271
(c-X 0) Zmacs command 45
(c-X E) Zmacs command 64
(c-X F) Zmacs command 12
(c-X G) Zmacs command 63
(c-X H) Zmacs command 63
(c-X J) Zmacs command 59
(c-X 0) Zmacs command 65
c-x Stepper command 94
(c-X S) Zmacs command 59
(c-X X) Zmacs command 63
c-X () Zmacs command 64
c-X) Zmacs command 59
c-X)]) Zmacs command 64
(c-Y) Zmacs command 60
c-Z Inspector command 300
C-Z in the Debugger 264, 271
(c-~) Zmacs command 57
(c-Z) Zmacs command 80

:daemon method combination 113, 116, 121
Daemon methods 116
Database 321
database 321
database 321
Database: Program Development Tools and

Techniques 79
Data in Compiled Code Files 331
dbg :arg function 267
dbg:*debug-Io-overrlde* variable 268
dbg:*defer-package-dwlm* variable 268
dbg:*frame* variable 268
dbg function 98, 256
dbg Function 256
dbg:fun function 268
dbg:loc function 267
dbg :*show-backtrace* variable 268
dbg:val function 268
Debugger 79, 80, 98, 253
Debugger 264, 271
Debugger 80
Debugger 255
Debugger 265
Debugger 264
Debugger 259
Debugger 262
Debugger 267
Debugger 259
Debugger 264
Debugger: Abort 261
Debugger Backtrace Commands 262
Debugger by Causing an Error 255
Debugger command 264, 271
Debugger command 80, 271
Debugger command 264, 271
Debugger command 80, 264, 271
Debugger command 80, 264, 271
Debugger command 80, 264, 271
Debugger command 264, 271
Debugger command 264, 271

D

March 1985

c-m-B
c-m-F
c-m-H
c-m-L
c-m-N
c-m-P
c-m-R
c-m-S
c-m-U
c-m-V
c-m-W
c-m-X

c-N
c-P
c-R
c-S

c-sh-P
c-T
c-x

HELP
m-<
m->
m-B
m-I
m-L
m-N
m-P
m-S
m-X

RESUME
s-sh-C

Summary of

Entering the Display

[Edit] Display
[Retry] Display

The

Proceeding From the Error in the

Entering the
Entering the

Summary of

dbg:

System

Debugger command 264. 271
Debugger command 264. 271
Debugger command 264. 271
Debugger command 264. 271
Debugger command 264. 271
Debugger command 264. 271
Debugger command 80. 264. 271
Debugger command 264. 271
Debugger command 264. 271
Debugger command 264. 271
Debugger command 80. 264. 271
Debugger command 264. 271
Debugger command 80. 264. 271
Debugger command 80. 264. 271
Debugger command 80. 264. 271
Debugger command 264. 271
Debugger command 264. 271
Debugger command 264. 271
Debugger command 271
Debugger command 264. 271
Debugger command 264. 271
Debugger command 264. 271
Debugger command 80. 264. 271
Debugger command 264. 267. 271
Debugger command 80. 264. 271
Debugger command 264. 271
Debugger command 264. 271
Debugger command 264. 271
Debugger command 264. 271
Debugger command 264. 271
Debugger command 264. 271
Debugger commands 271
Debugger Commands 271

345

Index

Debugger Commands for Dynamic Breakpoints and
Stepping Through Compiled Code 267

Debugger Commands for Information Display 265
Debugger Commands for Stack Manipulation 263
Debugger Commands That Call Other Systems 264
Debugger Commands That Trap on Frame Exit 266
Debugger From the Debugger 265
Debugger Functions 267
Debugger functions to return values in current stack

frame 267
Debugger Help 261
Debugger menu item 80
Debugger menu item 80
Debugger Proceed and Restart Options 256
Debugger: Program Development Tools and

Techniques 80
Debugger: Resume 261
Debugger special commands 80
Debugger Variables 268
Debugger with m-SUSPEND 256
Debugger with the dba Function 256
Debugging 79
Debugging Aids 273
Debugging Usp Programs 79
debug-Io-overrlde variable 268
[DeCache] Inspector menu item 297. 298
Declaration File 218
declare 315
def 310
:default-Inlt-pllst option for defflavor 116

346

Program Development Utilities

dbg:

:defauH-lnH-plist option for
:documentatlon option for

:gettable-Instance-varlables option for
:Inltable-Instance-varlables option for

:requlred-flavors option for
:requlred-methods option for

sl:
sl:

sl:

Loading the System
Mark
Edit

Add Patch Changed
Compile Changed

Edit Changed
Evaluate Changed

List Changed
Compile Changed
Evaluate Changed

Add Patch Changed
Edit Changed
List Changed

Loading System
Loading System

Adding New Options to
:bug-reports Option for

:complle-Ioad-Inlt Transformation of
:complle-Ioad Transformation of

:complle Transformation of
:component-systems Option for

:do-components Transformation of
:fasload Transformation of

:Inltlal-status Option for
:Ioad-bfd Transformation of

:malntalnlng-sltes Option for
:module Option for

:name Option for
:not-In-dlsk-Iabel Option for

:package Option for
:patchable Option for

patch-atom argument to :patchable option for
:pathname-defauH Option for

:readfile Transformation of
:short-name Option for

defconst 310
defconstant 310
defconst special form 70
defer-package-dwlm variable 268
deft 310
defflavor 310
defflavor 116
defflavor 141
defflavor 113
defflavor 124. 126
defflavor 116
demavor 113

March 1985

defflavor macro 113, 116
deflne-defsystem-speclal-varlable special form 214
define-make-system-speclal-variable special

form 227
deflne-slmple-transformatlon special form 214
Defining a System 191
Definition 217
Definition (c-m-H) Zmacs command 60
Definition (m-.) Zmacs command 40, 141, 142
Definitions (m-X) 241
Definitions (m-X) Zmacs command 70
Definitions (m-X) Zmacs command 56
Definitions (m-X) Zmacs command 75
Definitions (m-X) Zmacs command 56
Definitions Of Buffer (m-sh-C) Zmacs command 70
Definitions Of Buffer (m-sh-E) Zmacs command 75
Definitions of Buffer (m-X) 241
Definitions Of Buffer (m-X) Zmacs command 56
Definitions Of Buffer (m-X) Zmacs command 56
Definitions of functions 329
Definitions: Program Development Tools and

Techniques 40
Definitions That Use Logical Pathnames 217
Definitions That Use Physical Path names 219
defmacro 310
defmethod 310
defpackage 310
defselect 310
defstruct 310
defsubst 310
defsystem 310
defsystem 214
defsystem 196
defsystem 211
defsystem 210
defsystem 209
defsystem 197
defsystem 210
defsystem 209
defsystem 196
defsystem 210
defsystem 196
defsystem 199
defsystem 194
defsystem 196
defsystem 194
defsystem 195. 231. 235
defsystem 236
defsystem 195. 231. 235
defsystem 209
defsystem 194

347

March 1985 Index

:sklp defsystem Macro 213
defsystem Modules 198
defsystem Options 194
defsystem special form 57, 191, 231
defsystem Transformations 201, 210, 211

List of defsystem Transformations 209
Interaction Between defsystem Transformations and make-system 202

defun 310
defvar 310
defvar special form 16, 70
defvar-standard 310
defwlndow-resource special form 126
Delnstall Macro (m-X) Zmacs command 64

Program Development: Refining Stripe Density and Spacing 45
Dependencies 201
Deriving Methods for Tools and Techniques 3

Features Described In Tools and Techniques 4
describe-flavor function 141
Describe Flavor (m-X) Zmacs command 141
describe function 35, 104
describe-system function 249
Describe Variable At Point (c-sh-V) Zmacs

command 39
Program Development: Design and Figure Outline 13

Designing the Advice 283
Program Development: Design and Figure Outline 13
Program Development: Drawing Stripes 27
Program Development: Modifying the Output Module 112
Program Development: Refining Stripe Density and

Spacing 45
Aligning Code: Program Development Tools and Techniques 26

Argument Lists: Program Development Tools and Techniques 43
Balancing Parentheses: Program Development Tools and Techniques 26

Before You Begin: Program Development Tools and Techniques 7
Breakpoints: Program Development Tools and Techniques 98

Callers: Program Development Tools and Techniques 44
Commenting Out Code: Program Development Tools and Techniques 83

Comments: Program Development Tools and Techniques 23
Completion: Program Development Tools and Techniques 8

Copying Buffers and Files: Program Development Tools and Techniques 63
Creating a File: Program Development Tools and Techniques 9

Definitions: Program Development Tools and Techniques 40
Documentation: Program Development Tools and Techniques 42

Editing Code: Program Development Tools and Techniques 56
Entering Zmacs: Program Development Tools and Techniques 9

Expanding Macros: Program Development Tools and Techniques 100
File Attribute Lists: Program Development Tools and Techniques 10

Functions: Program Development Tools and Techniques 40
General Information on Flavors: Program Development Tools and Techniques 141

Getting Started: Program Development Tools and Techniques 9
HELP: Program Development Tools and Techniques 7

Identifying Changed Code: Program Development Tools and Techniques 56
Init Keywords: Program Development Tools and Techniques 144

Keyboard Macros: Program Development Tools and Techniques 64
Killing and Yanking: Program Development Tools and Techniques 60

Lisp Input Editing: Program Development Tools and Techniques 77
Major and Minor Modes: Program Development Tools and Techniques 12

Methods: Program Development Tools and Techniques 142
Moving Text: Program Development Tools and Techniques 59

Moving Through Text: Program Development Tools and Techniques 59
Multiple Buffers: Program Development Tools and Techniques 65

Names: Program Development Tools and Techniques 41
Objects: Program Development Tools and Techniques 35

348

Program Development Utilities

Other Displays: Program
Ou1l1nlng the Figure: Program

Pathnames: Program
Program

Program Strategy: Program
Searching and Replacing: Program

Signalling Conditions: Program
Simple Screen Ou1pu1: Program

Stepping: Program
Symbols: Program

The Complier Warnings Database: Program
The Debugger: Program
The Inspector: Program

Tracing and Stepping: Program
Tracing: Program

Using Multiple Windows: Program
Using Registers: Program

Variables: Program
Zmacs and Other Windows: Program

Complier Tools and Their

Display
File types of the patch

Patch
View

tr

Debugger Commands for Information
Display status of file system

Error
Inspection Pane

Entering the
[Edit]

[Retry]

Other

Brief

Long

Mouse

Program Developmen1:

bin file
sys:

Rebound Variable Bindings
Debugger Commands for

Development Tools and Techniques 68
Development Tools and Techniques 16
Development Tools and Techniques 45
Development Tools and Techniques 1
Development Tools and Techniques 13
Development Tools and Techniques 57
Development Tools and Techniques 133
Development Tools and Techniques 14
Development Tools and Techniques 94
Development Tools and Techniques 38
Development Tools and Techniques 79
Development Tools and Techniques 80
Development Tools and Techniques 104
Development Tools and Techniques 92
Development Tools and Techniques 92
Development Tools and Techniques 65
Development Tools and Techniques 63
Development Tools and Techniques 39
Development Tools and Techniques 66
Differences 316
Directories 45

March 1985

Directory (c-X c-D) Zmacs command 45
directory file 236
Directory File 234
Directory (m-X) Zmacs command 45
Direct (c-X D) Zmacs command 45
Direct (m-X) Zmacs command 45
disassemble function 104
Disassemble (m-X) Zmacs command 104
Display 265
display 303
Display 255
Display 299
Display Debugger 80
Display Debugger From the Debugger 265
Display Debugger menu item 80
Display Debugger menu item 80
Display Directory (c-X c-D) Zmacs command 45
Displays: Program Development Tools and

Techniques 68
Display status of active processes 303
Display status of areas 303
Display status of file system display 303
Display status of hostat 303
Display status of window area 303
Display system information 304
:do-components Transformation of defsystem 210
Documentation (c-sh-D) Zmacs command 39, 42
documentation function 39, 42
Documentation (m-sh-D) Zmacs command 39, 42
:documentatlon option for demavor 141
Documentation: Program Development Tools and

Techniques 42
documentation string 129
Documentation strings 39, 42
Down Comment Line (m-N) Zmacs command 23
Drawing Stripes 27
:draw-line method of tv:graphlcs-mixin 14, 116
dumper 309, 316
dump-forms-to-file function 331
During Evaluation 260
DynamiC Breakpoints and Stepping Through Compiled

Code 267

349

March 1985 Index

E

fr Dlred (c-X 0) Zmacs command 45

SELECT

Multiple

Usp Input
Writing and

Usp Input

Evaluation and the
c-m-Y input

m-Y input
Entering the

Tools for Compiling Code From the

Specifying compiler
Entering the Debugger by Causing an

Proceeding From the

E E
E 9
:edges-from Init option for tv:essentlal-wlndow 116
Edit caJlers (m-X) Zmacs command 44
Edit Callers (m-X) Zmacs command 44
Edit Changed Definitions (m-X) Zmacs command 56
Edit Changed Definitions Of Buffer (m-X) Zmacs

command 56
Edit Combined Methods (m-X) Zmacs command 142
Edit Complier Warnings (m-X) Zmacs command 79,

321
Edit Definition (m-.) Zmacs command 40, 141, 142
[Edit] Display Debugger menu item 80
Edit File Warnings (m-X) Zmacs command 321
editing n
Editing Code 7
Editing Code: Program Development Tools and

Techniques 56
Editing: Program Development Tools and

Techniques 77
Edit Methods (m-:-X) Zmacs command 65, 142
Editor 75
editor command n
editor command n
Editor From the Debugger 264
Editor Into Your World 316
[Edit Screen] System menu item 66, 129
[Edit] System menu item 9
Electric Shift Lock Mode (m-X) Zmacs command 12
End Kbd Macro (c-X » Zmacs command 64
END Zmacs minibuffer command 8
Entering and Leaving the Inspector 295
Entering the Debugger 255
Entering the Debugger by Causing an Error 255
Entering the Debugger with m-SUSPEND 256
Entering the Debugger with the dba Function 256
Entering the Display Debugger From the

Debugger 265
Entering the Editor From the Debugger 264
Entering Zmacs: Program Development Tools and

Techniques 9
:entrycond option for trace 92
:entrycond option to trace 276
:entrycond trace Option 276
:entry option for trace 92
:entry option to trace 277
:entryprint option for trace 92
:entryprlnt option to trace 2n
:entryprint trace Option 277
:entry trace Option 2n
environments 329
Error 255
Error Display 255
error flavor 133
Error in the Debugger: Resume 261
:error option for trace 92, 98
:error option to trace 276
error-restart-loop special form 129
[Error] trace menu item 92, 98
:error trace Option 276

350

Program Development Utilities

:edges-from Inlt option for tv:
:expose-p Inlt option for tv:

:mlnlmum-helght Inlt option for tv:
:mlnlmum-wldth Init option for tv:

Compiling and

Rebound Variable Bindings During
Stepping Through an

Controlling the

Tracing Function
Untraclng Function
Finding Out About

Debugger Commands That Trap on Frame

Macro
Macro

Push Pop Point

Macro Expand
Macro Expand

ESCAPE Inspector command 300
essential-window 116
essential-window 116
essential-window 116
essential-window 116
evalhook 289
evalhook function 289
evalhook variable 289

March 1985

Evaluate And Replace Into Buffer (m-X) Zmacs
command 75

Evaluate Buffer (m-X) Zmacs command 75
Evaluate Changed Definitions (m-X) Zmacs

command 75
Evaluate Changed Definitions Of Buffer (m-sh-E)

Zmacs command 75
Evaluate Into Buffer (m-X) Zmacs command 75
Evaluate Minibuffer (m-ESCAPE) Zmacs command 75
Evaluate Region (c-sh-E) Zmacs command 75
Evaluating a Form In the Debugger 259
Evaluating code 69, 75, 94
Evaluating Usp 69
Evaluating Usp Code 75
Evaluation 260
Evaluation 287
Evaluation and· the Editor 75
Evaluation of Top-level Forms 314
eval-when 310
eval-when special form 314
Examining a Complied Code File 300
Examining Stack Frames with Debugger Backtrace

Commands 262
Examining the Current Stack Frame In the

Debugger 262
Examining values of instance variables 267
Execution 275
Execution 280
Existing Code 35
Exit 266
:exltbreak option for trace 92, 98
:exltbreak option to trace 276
:exltbreak trace Option 276
:exltcond option for trace 92
:exltcond option to trace 276
:exltcond trace Option 276
Exiting From the Debugger: Abort 261
Exiting the Inspector 295
[Exit] Inspector menu Item 104, 298
:exlt option for trace 92
:exlt option to trace 278
:exltprlnt option for trace 92
:exltprlnt option to trace 2n
:exltprlnt trace Option 2n
:exlt trace Option 2n
Expand Expression All (m-X) Zmacs command 100
Expand Expression (c-sh-M) Zmacs command 100
Expanding macros 100
Expanding Macros: Program Development Tools and

Techniques 100
:experlmental system status 251
Explicit (m-SPACE) Zmacs command 59
:expose-p inlt option for tv:essentlal-wlndow 116
Expression All (m-X) Zmacs command 100
Expression (c-sh-M) Zmacs command 100

351

March 1985 Index

F

*expr special form 325
Call Last Kbd Macro (c-X E) Zmacs command 64

Introduction to the System
Patch

System

Optimizer

A Mlxln to Position the
Program Development: Design and

Ou1l1nlng the

Add region to patch
Compiling and Loading a

Examining a Complied Code
File types of the patch directory

File types of the system verslon-dlrectory
Install patch

Patch
Patch Directory

Sys:site;Logica/-host. Translations
Sys:slte;System-name.System

. System
System Declaration

System Verslon-dlrectory
Translations

Sys:slte;system-name.system

Find
complier:
complier:

bin
sys:

Compile
Insert
Load

Set Patch
Format of patch

Creating a
Arrays In compiled code

Complied code objects In complied code
Copying
Creating

File Types of Lisp Source and Compiled Code
Individual Patch

Inlt
Instances In compiled code

Lists In complied code
Names of Patch

Numbers In compiled code
Organization of Patch

Putting Data In Complied Code
Symbols In complied code

System source
Tools for Compiling

F
Facility 189
Facility 231
facility 189
:fasd-form message 331
Fasdump 331
:fasload simple transformation 201
:fasload Transformation of defsystem 209
feature of the complier 327
Features Described In Tools and Techniques 4
*fexpr special form 325
Figure 113
Figure Ou1line 13
Figure: Program Development Tools and

Techniques 16
file 238
File 73
File 300
file 236
file 236
file 242
file 231
File 234
File 218
File 217
file 217
File 218
File 233
file 218
file 218

F

File Attribu1e Lists: Program Development Tools and
Techniques 10

File (c-X c-F) Zmacs command 9
file-declaration function 325
flle-declare function 325
file dumper 309. 316
flle-Iocal-declaratlons variable 324
File (m-X) Zmacs command 73
File (m-X) Zmacs command 63
File (m-X) Zmacs command 73
File (m-X) Zmacs command 10
file names 236
File: Program Development Tools and Techniques 9
files 331
files 331
files 63
files 9
Files 318
Files 235
files 12.64
files 331
files 331
Files 236
files 331
Files 235
Flies 331
files 331
files 231
Files 317

352

Program Development Utilities

Types of Patch
Attribute lists (in

Copying Buffers and

Display status of
51:

bin

Edit
Set

Auto

Clearing the Trap-on-exit
Setting the Trap-on-exit

Toggling the Trap-on-exlt
condition

error
Igp:baslc-Igp-stream

51 :vanllla-fiavor
sys:abort

tv:any-tyl-mixln
tv:graphlcs-mlxln

tv:llst-mouse-buHons-mlxln
tv:process-mlxln

tv:sheet
tv:wlndow

51:
Describe

Init keywords (for
Programming Aids for

Using

General Information on

Set
Init keywords

advise special
advise-within special

break special
compller:add-optimlzer special

compller:make-message-obsolete special
compller:make-obsolele special

condition-bind special
defconst special

defsystem special
defvar special

defwlndow-resource special
error -restart-loop special

eval-when special
*expr special

*fexpr special
*Iexpr special

muHlple-value special
sl :define-defsystem-speclaJ-varlable special

Files 233
files) 10
Files: Program Development Tools and

Techniques 63
Files That Maclisp Must Compile 329

March 1985

file system display 303
fIle-transformation-functlon variable 229
file type 318
File Types of Usp Source and Complied Code

Files 318
File types of the patch directory file 236
File types of the system version-directory file 236
File Warnings (m-X) Zmacs command 321
Fill Column (c-X F) Zmacs command 12
Fill Long Comment (m-X) Zmacs command 23
Fill Mode (m-X) Zmacs command 12
Find File (c-X c-F) Zmacs command 9
Finding Out About Existing Code 35
Find Unbalanced Parentheses (m-X) Zmacs

command 26
Finish Patch (m-X) 242
Flag for the Current and All Outer Frames 266
Flag for the Current and All Outer Frames 266
Flag for the Current Frame 266
flavor 133
flavor 133
flavor 124
flavor 142
flavor 129
flavor 129
flavor 116
flavor 129
flavor 129
flavor 116. 133
flavor 112. 116
flavor-allowed-Inlt-keywords function 144
Flavor (m-X) Zmacs command 141
flavors) 144
Flavors and Windows 141
Flavors and Windows 111
Flavors for Lgp Output 124
Flavors: Program Development Tools and

Techniques 141
Fonts (m-X) Zmacs command 10
(for flavors) 144
form 281
form 285
form 98
form 327
form 324
form 323
form 133
form 70
form 57. 191. 231
form 16. 70
form 126
form 129
form 314
form 325
form 325
form 325
form 116
form 214

March 1985

sl :define-make-system-speclal-variable special
sl:deflne-slmple-transformatlon special

special special
trace special

unadvlse special
unadvlse-withln special

unspeclal special
untrace special

unwind-protect special
wlth-open-stream special

form 227
form 214
form 314
form 92. 94. 98. 275
form 282
form 285
form 314
form 92. 280
form 133
form 126
Format of patch file names 236

Controlling the Format of trace Output 279
Evaluating a Form in the Debugger 259

Controlling the Evaluation of Top-level Forms 314
How the Stream Compiler Handles Top-level Forms 310

Current stack frame 264. 271
Debugger functions to return values In current stack frame 267

Inspecting a stack frame 299
Toggling the Trap-on-exit Flag for the Current Frame 266

Debugger Commands That Trap on Frame Exit 266
Examining the Current Stack Frame in the Debugger 262

353

Index

Clearing the Trap-on-exit Flag for the Current and A" Outer
Frames 266

Setting the Trap-on-exit Flag for the Current and A" Outer

Examining Stack
dbg:

Entering the Display Debugger
Entering the Editor

Exiting
Tools for Compiling Code

Proceeding

Advising a
applyhook

apropos
argllst

breakon
bug

compile
compller:compile-file

compller:complle-file-load
compller:file-declaratlon

compller:flle-declare
compller:functlon-defined

compller:functlon-referenced
compller:load-compller-wamlngs

dbg
dbg:arg
dbg:fun
dbg:loc
dbg:val

describe
describe-flavor

describe-system
disassemble

documentation
Entering the Debugger with the dbg

evalhook
get-handler-for

Inspect
IIstarray

Frames 266
Frames with Debugger Backtrace Commands 262
*frame· variable 268
From the Debugger 265
From the Debugger 264
From the Debugger: Abort 261
From the Editor Into Your World 316
From the Error In the Debugger: Resume 261
fs:make-Ioglcal-pathname-host 217
fs:set-Ioglcal-pathname-host 218
Function 281
function 291
function 38
function 43
function 98
function 264
function 307. 319
function 73. 307. 317
function 73. 318
function 325
function 325
function 325
function 325
function 321
function 98. 256
function 267
function 268
function 267
function 268
function 35. 104
function 141
function 249
function 104
function 39. 42
Function 256
function 289
function 142
function 104. 295
function 35

354

Program Development Utilities

load
load-and-save-patchea

load-patches
make-system

mexp
note-private-patch

peek
pkg-golo

pllst
prlnt-compller-wamlngs

print-system-modificatlons
prompl-and-read

set-system-status
sl:advlse-1

sl:flavor-allowed-Inlt-keywords
sl :gel-release-verslon
sl:get-system-verslon

signal
sl:make-hardcopy-stream

sl:map-system-files
sl :patch-Ioaded-p

sl:patch-system-pathname
sl:set-system-file-properties

sl:system-verslon-Info
sl:unadvlse-1
sl:unbln-file

step
sys:dump-forms-to-file

The Top-level
tv:choose-varlable-valuea

tv:make-bllnker
tv:make-wlndow

tv:sheet-followlng-bllnker
typep

unbreakon
uncomplle

what-flles-call
where-Is

who-calls

complier:
Tracing

Untracing
Compiled

complier:

Advice to
Compiled
Debugger

Definitions of
Interpreted

Tools for Compiling Single
complier:

complier:

Debugger

Advising One

function 73
function 246
function 245
function 79. 217. 221. 307
function 100
function 244
function 304
function 16
function 38
function 321
function 250
function 133
function 251
function 283
function 144
function 250
function 249
function 112. 133
function 126
function 252
function 250
function 237
function 252
function 249
function 283
function 300
function 94. 287
function 331
Function 126
function 126. 133
function 133
function 112. 121, 126, 129
function 133
function 141
function 98
function 319
function 38
function 38
function 38

March 1985

Function Apropos (m-X) Zmacs command 41
Function compiler 309. 315
functlon-defined function 325
Function Execution 275
Function Execution 280
function object 309
:function option for tv:choose-variable-values 133
Function-referenced-but-never-defined Warnings 324
function-referenced function 325
Functions 40
functions 281
functions 69
Functions 267
functions 329
functions 69
Functions 318
functlons-defined variable 324
Functions: Program Development Tools and

Techniques 40
functions-referenced variable 325
Functions That Operate on a System 251
functions to return values In current stack frame 267
Functions used Inside the Debugger 267
Function Within Another 285

March 1985

G

H

dbg:
Set Fill Column (c-X

Open
sl:
sl:

:draw-ilne method of tv:
tv:

Open Get Register (c-X

Restart
How the Stream Compiler

Debugger

Peek

The Inspector
Creating a logical
Display status of

Mark Whole (c-X

SELECT

G

H

355

Index

fun function 268
F) Zmacs command 12

G
General Information on Flavors: Program Development

Tools and Techniques 141
Generic operations 112
get-handler-for function 142
Get Register (c-X G) Zmacs command 63
get-release-version function 250
get-system-verslon function 249
:geHable-lnstance-variables option for

deffiavor 113
Getting Information About a System 249
Getting Started: Program Development Tools and

Techniques 9
Graphic Output of the Sample Program 185
graphlcs-mlxln 14. 116
graphlcs-mlxln flavor 116
G) Zmacs command 63

handlers 80
Handles Top-level Forms 310
Help 261
HELP Debugger command 264. 271
Help Message 303

H

HELP: Program Development Tools and Techniques 7
HELP Stepper command 94
HELP Zmacs command 7. 64
HELP Zmacs mini buffer command 8
History Pane 297
host 217
hostat 303
How the Inspector Works 295
How the Stream Compiler Handles Top-level

Forms 310
How to Invoke the Complier 307
How to Use the Debugger 259
H) Zmacs command 63

I 104. 295
Identifying Changed Code: Program Development

Tools and Techniques 56
ff-for-lIspm macro 329
ff-for-maclisp-else-lIspm macro 329
ff-for-macllsp macro 329
ff-ln-lIspm macro 329
ff-In-macllsp macro 329
Ignored arguments 324
Ignore variable 324
Inactive patches 242
Incremental Search (c-S) Zmacs command 57
:Increment-patch Option for make-system 223
Indent For Comment (c-; or m-;) Zmacs

command 23
Indent For Usp (TAB or c-m-TAB) Zmacs

356

Program Development Utilities

Attribu1e lists
Backtrace

Display system
Getting

Debugger Commands for
General

:edges-from
:expose-p

:mlnlmum-helght
:mlnlmum-wldth

:process
:bllnker-p

Lisp
Lisp

c-m-V
m-V

Functions used

The Inspector

Entering and Leaving the
Exiting the

Special Characters Recognized by the
The

Using the
Using the mouse in the

March 1985

command 26
Indent New Comment Une (m-LINE) Zmacs

command 23
Indent New Une (l I NE) Zmacs command 26
Indent Region (c-m-\) Zmacs command 26
Indent Sexp (c-m-Q) Zmacs command 26
Individual Patch Files 235
(In files) 10
information 268
Information 304
Information Abou1 a System 249
Information Display 265
Information on Flavors: Program Development Tools

and Techniques 141
InhlbH-style-wamlngs macro 323
:Inltable-Instance-varlables option for

defflavor 124, 126
Init files 12, 64
Initial patch state 242
:lnHlal-status Option for defsystem 196
Init keywords (for flavors) 144
Init Keywords: Program Development Tools and

Techniques 144
:Inlt method of tv:sheet 116
init option for tv:essentlal-wlndow 116
init option for tv:essentlal-wlndow 116
init option for tv:essentlal-wlndow 116
init option for tv:essentlal-wlndow 116
init option for tv:process-mlxln 129
init option for tv:sheet 116
In-progress patch 242
In-progress patch state 242
input editing 77
Input Editing: Program Development Tools and

Techniques 77
input editor command 77
input editor command 77
Insert Buffer (m-X) Zmacs command 63
Insert File (m-X) Zmacs command 63
:Inslde-size method of tv:sheet 116
inside the Debugger 267
Inspect command 295
inspect function 104, 295
Inspecting a closure 299
Inspecting a compiled code object 299
Inspecting a list 299
Inspecting a named structure 299
Inspecting an array 299
Inspecting an instance 299
Inspecting a select method 299
Inspecting a stack frame 299
Inspecting a symbol 299
Inspecting objects 298
[Inspect] in system menu 295
Inspection Pane 298
Inspection Pane Display 299
Inspector 104, 141, 293
Inspector 295
Inspector 295
Inspector 300
Inspector 293
Inspector 295
Inspector 297, 298

March 1985

J

K

BREAK
c-z

ESCAPE

The
The
The

[Clear]
[DeCache]

[Exit]
[Modify]
[Return]
[Set \l

The
The

How the

Inspecting an

Examining values of
The Arrow Window:

The Inspector

How to
Where

J

357

Index

Inspector command 300
Inspector command 300
Inspector command 300
Inspector commands 298
Inspector History Pane 297
Inspector Inspection Pane 298
Inspector Interaction Pane 297
Inspector menu item 298
Inspector menu item 297, 298
Inspector menu item 104, 298
Inspector menu item 104, 298
Inspector menu item 104, 298
Inspector menu item 298
Inspector Menu Pane 298
Inspector: Program Development Tools and

Techniques 104
Inspector Works 295
[Inspect] System menu item 104
Install Macro (m-X) Zmacs command 64
Install Mouse Macro (m-X) Zmacs command 64
Install patch file 242
instance 299
Instances in compiled code files 331
Instance variables 113, 124, 126
Instance variables 267·
Interaction, Processes, and the Mouse 129
Interaction Between defsystem Transformations and

make-system 202
Interaction Pane 297
Interpreted functions 69
Introduction to th~ Compiler 307
Introduction to the System Facility 189
Introduction to Tools and Techniques 3
Invoke the Compiler 307
Is Symbol (m-X) Zmacs command 38

Jump To Saved Position (c-X J) Zmacs
command 59

J

Jump To Saved Position (c-X J) Zmacs command 59

Call Last
Name Last

Set
make-system

Init
Init

Adding New

Backward

K
Kbd Macro (c-X E) Zmacs command 64
Kbd Macro (m-X) Zmacs command 64
Keeping Track of Lisp Syntax 23
Keyboard macros 64
Keyboard Macros: Program Development Tools and

Techniques 64
Key (m-X) Zmacs command 64
Keywords 222
keywords (for flavors) 144
Keywords: Program Development Tools and

Techniques 144
Keywords to make-system 227
Kill Comment (c-m-;) Zmacs command 23

K

Killing and Yanking: Program Development Tools and
Techniques 60

Killing text 60
Kill Sexp (c-m-K) Zmacs command 60
Kill Sexp (c-m-RUBOUT) Zmacs command 60

358

Program Development Utilities

L
Maintaining

Call
Name

Entering and
Patch

:send-command method of
:send-coordlnates method of

Flavors for
Converting

Indent New
Indent New Comment

Down Comment
Up Comment

List Matching
Indent New Line

Compiling and Evaluating
Compiling
Evaluating

Debugging
File Types of

Keeping Track of
Indent For

Inspecting a

Multiple

tv:
Reparse Attribute
Update Attribute

:system
Argument

Attribute
Argument

File Attribute

compiler:

Compiling and

L

March 1985

Large Programs 187
Last Kbd Macro (c-X E) Zmacs command 64
Last Kbd Macro (m-X) Zmacs command 64

L

:Iatest symbol in make-system :version option 222
Leaving the Inspector 295
level 250
*Iexpr special form 325
Igp:baslc-Igp-stream 124
Igp:baslc-Igp-stream 124
Igp:baslc-Igp-stream flavor 124
Lgp Output 124
Lgp to Screen Coordinates 121
Line (L I NE) Zmacs command 26
Line (m-LI NE) Zmacs command 23
Line (m-N) Zmacs command 23
Line (m-P) Zmacs command 23
Line region 297
Lines (m-X) Zmacs command 57
(LINE) Zmacs command 26
Lisp 69
Lisp Code 70
Lisp Code 75
Lisp input editing n
Lisp Input Editing: Program Development Tools and

Techniques n
Lisp Mode (m-X) Zmacs command 12
Lisp Programs 79
Lisp Source and Complied Code Files 318
Lisp Syntax 23
Lisp (TAB or c-m-TAB) Zmacs command 26
list 299
listarray function 35
List Callers (m-X) Zmacs command 38, 44
List Callers (m-X) Zmacs command 44
List Changed Definitions (m-X) Zmacs command 56
List Changed Definitions Of Buffer (m-X) Zmacs

command 56
List Combined Methods (m-X) Zmacs command 142
List Matching Lines (m-X) Zmacs command 57
List Matching Symbols (m-X) Zmacs command 38
List "Methods (m-X) Zmacs command 142
Iist-mouse-buHons-mixin flavor 129
List (m-X) Zmacs command 10
List (m-X) Zmacs command 10
List of defsystem Transformations 209
List Option for load-patches 245
lists 43
Lists in compiled code files 331
lists (in files) 10
Lists: Program Development Tools and

Techniques 43
Lists: Program Development Tools and

Techniques 10
load-and-save-patches function 246
:Ioad-bfd Transformation of defsystem 210
load-compiler-warnings function 321
Load Compiler Warnings (m-X) Zmacs command 79,

321
Load File (m-X) Zmacs command 73
load function 73
Loading a File 73

March 1985

M

:noselectlve Option for
:nowarn Option for

:selectlve Option for
:sllent Option for

:system Ust Option for
System-name Option for

:verbose Option for

dbg:
Electric Shift

Creating a
Loading System Definitions That Use

Fill

Set

Edit Definition
Indent For Comment (c-; or

Files That

#M sharp-sign reader
compile-flavor-methods

deffl avo r
If-for-lIspm

If-for-macllsp
If-for-macllsp-else-llspm

if-in-lispm
If-In-macllsp

Inhibit-style-warnings
:sklp defsystem

#Q sharp-sign reader
Call Last Kbd

Deinstall
Install

Install Mouse
Name Last Kbd

Expanding
Keyboard

Expanding

Keyboard

Bug
Send

Loading patches 231. 244
Loading System Definitions That Use Logical

Pathnames 217
Loading System Definitions That Use Physical

Pathnames 219
Loading the System Definition 217
Load-like transformations 214
load-patches 245
load-patches 246
load-patches 245. 246
load-patches 246
load-patches 245
load-patches 245
load-patches 245. 246
load-patches function 245
Load System command 217
loc function 267
Lock Mode (m-X) Zmacs command 12
logical host 217
Logical Pathnames 217
Long Comment (m-X) Zmacs command 23

359

Index

Long Documentation (m-sh-D) Zmacs command 39.
42

Lowercase (m-X) Zmacs command 10

(m-.) Zmacs command 40. 141. 142
m-;) Zmacs command 23
m-< Debugger command 264. 271
m-> Debugger command 264. 271
Maclisp Must Compile 329
macro 310
macro 329
macro 133
macro 113. 116
macro 329
macro 329
macro 329
macro 329
macro 329
macro 323
Macro 213
macro 329
Macro (c-X E) Zmacs command 64
Macro Expand Expression All (m-X) Zmacs

command 100
Macro Expand Expression (c-sh-M) Zmacs

command 100
Macro (m-X) Zmacs command 64
Macro (m-X) Zmacs command 64
Macro (m-X) Zmacs command 64
Macro (m-X) Zmacs command 64
macros 100
macros 64
Macros: Program Development Tools and

Techniques 100
Macros: Program Development Tools and

Techniques 64
mail 264.271
mail about patch 242
Maintaining Large Programs 187
:maintaining-sites Option for defsystem 196

M

360

Program Development Utilities

System

tv:
81:
Is:

complier:
complier:

Adding New Keywords to
:batch option for

:complle Option for
:Increment.patch Option for

Interaction Between defsystem Transformations and
:noconflrm Option for

:no-Increment-patch Option for
:noload Option for

:noop Option for
:nowam Option for

:prlnt-only Option for
:recomplle Option for

:reload Option for
:selectlve Option for

:sllent Option for
:update-dlrectory Option for

:verslon Option for
sl:

sl:

sl:

:Iatest symbol in
:newest symbol in

:released symbol in
tv:

Debugger Commands for Stack
sl:

Set Pop
Swap Point And

List
List

[Inspect] in system
[ARGPDL] trace

[Attributes] System
. [Break after] trace
[Break before] trace

[Clear] Inspector
[Cond after] trace

[Cond before] trace
[Cond break after] trace

[Cond break before] trace
[Conditional] trace

[DeCache] Inspector

March 1985

maintenance 231
Major and Minor Modes: Program Development Tools

and Techniques 12
Major version 236
Major version number 231
make-bllnker function 133
make-hardcopy-stream function 126
make-Ioglcal-pathname-host 217
make-message-obsolete special form 324
make-obsolete special form 323
make-system 227
make-system 79, 222
make-system 222
make-system 223
make-system 202
make-system 222
make-system 223
make-system 223
make-system 223
make-system 222
make-system 223
make-system 223
make-system 223
make-system 222
make-system 222
make-system 226
make-system 223
make-system-forms-to-be-evaled-after

variable 229
make-system-forms-to-be-evaled-before

variable 228
make-system-forms-to-be-evaled-flnally

variable 229
make-system function 79, 217, 221, 307
make-system Keywords 222
make-system :verslon option 222
make-system :verslon option 222
make-system :verslon option 222
make-window function 112, 121, 126, 129
Making a System 221
Making Patches 238
Manipulating the control stack 264, 271
Manipulation 263
map-system-flles function 252
Mark (c-SPACE) Zmacs command 59
Mark (c-X c-X) Zmacs command 59
Mark Definition (c-m-H) Zmacs command 60
Mark Whole (c-X H) Zmacs command 63
Matching Lines (m-X) Zmacs command 57
Matching Symbols (m-X) Zmacs command 38
m-8 Debugger command 80, 264, 271
menu 295
menu item 92
menu l1em 141
menu item 92
menu l1em 92
menu item 298
menu i1em 92
menu item 92
menu item 92, 98
menu item 92, 98
menu item 92
menu item 297, 298

March 1985

[Edit] Display Debugger
[Edit Screen] System

[Edit] System
[Error] trace

[Exit] Inspector
[Inspect] System

[Modify] Inspector
[Per Process] trace

[Print after] trace
[Print before] trace

[Print] trace
[Retry] Display Debugger

[Return] Inspector
[Set \1 Inspector

[Split Screen] System
[Step] trace

[Trace] System
[Untrace] trace
[Wherein] trace

The Inspector
Source Compare

Evaluate Minibuffer
:fasd-form
Peek Help

Inspecting a select
:proceed

:report
:who-Ilne-documentatlon-string

:case
:daemon

:send-command
:send-coordlnates

:operatlon-handled-p
:whlch-operations

:any-tyl
:draw-ilne

:change-of-slze-or-marglns
:inlt

:Inslde-slze
: refresh

Daemon
Primary
Deriving

Edit
Edit Combined

List
List Combined

c-? Zmacs
COMPLETE Zmacs

END Zmacs
HELP Zmacs

RETURN Zmacs
SPACE Zmacs

Evaluate

menu Item 80
menu Item 66, 129
menu Item 9
menu Item 92, 98
menu Item 104, 298
menu item 104
menu item 104, 298
menu item 92
menu Item 92
menu item 92
menu Item 92
menu Item 80
menu Item 104, 298
menu item 298
menu item 66, 129
menu item 92. 94
menu item 92. 94
menu Item 92
menu item 92
Menu Pane 298
Merge (m-X) Zmacs command 56
(m-ESCAPE) Zmacs command 75
message 331
Message 303
method 299
method 133
method 133
method 129
method combination 133
method combination 113, 116. 121
method of Igp:baslc-Igp-stream 124
method of Igp:baslc-Igp-stream 124
method of sl:vanllla-fiavor 142
method of sl:vanllla-fiavor 142
method of tv:any-tyl-mlxln 129
method of tv:graphlcs-mlxln 14. 116
method of tv:sheet 116
method of tv:sheet 116
method of tv:sheet 116
method of tv:sheet 116. 129
Methods 142
methods 116
methods 113. 116. 121
Methods for Tools and Techniques 3
Methods (m-X) Zmacs command 65. 142
Methods (m-X) Zmacs command 142
Methods (m-X) Zmacs command 142
Methods (m-X) Zmacs command 142
Methods: Program Development Tools and

Techniques 142
mexp function 100
m-I Debugger command 264. 267. 271
Minibuffer 8
minibuffer command 8
minibuffer command 8
minibuffer command 8
mini buffer command 8
mini buffer command 8
minibuffer command 8
Minibuffer (m-ESCAPE) Zmacs command 75
:mlnlmum-helght init option for

tv:essential-window 116
:mlnlmum-wldth init option for

361

Index

362

Program Development Utilities

Major and

A

Indent New Comment Une

Down Comment Line
Atom Word

Auto Fill
Electric Shift Lock

Lisp

Major and Minor

Print

Program Development:

Anonymous
Program Development: Modifying the Output

Calculation
Output

:package option for the

defsystem

The Arrow Window: Interaction. Processes. and the

Using the
Install

Up Comment Une

Compile Changed Definitions Of Buffer
Long Documentation

Evaluate Changed Definitions Of Buffer
Push Pop Point Explicit

Entering the Debugger with

Using

Files That Maclisp
Save Region

March 1985

tv:essentlal-wlndow 116
Minor Modes: Program Development Tools and

Techniques 12
Minor version 236
Minor version number 231. 238
Mixin to Position the Figure 113
m-L Debugger command SO, 264. 271
(m-LINE) Zmacs command 23
m-N Debugger command 264, 271
(m-N) Zmacs command 23
Mode (m-X) Zmacs command 12
Mode (m-X) Zmacs command 12
Mode (m-X) Zmacs command 12
Mode (m-X) Zmacs command 12
Modes 12
Modes: Program Development Tools and

Techniques 12
Modifications (m-X) Zmacs command 56
Modified Two Windows (c-X 4) Zmacs command 65
Modifying the Output Module 112
[Modify] Inspector menu item 104. 298
Modularity 112
Module 191
module 199
Module 112
Module for the Sample Program 147
Module for the Sample Program 165
:module option 199
:module Option for defsystem 199
Modules 198
Module specification 199
Mouse 129
Mouse clicks 129
Mouse cursor as an arrow 297
Mouse documentation string 129
mouse in the Inspector 297. 298
Mouse Macro (m-X) Zmacs command 64
Move To Previous Point (c-m-SPACE) Zmacs

command 59
Moving text 59
Moving Text: Program Development Tools and

Techniques 59
Moving Through Text: Program Development Tools

and Techniques 59
m-P Debugger command 264. 271
(m-P) Zmacs command 23
m-S Debugger command 264. 271
(m-sh-C) Zmacs command 70
(m-sh-D) Zmacs command 39. 42
(m-sh-E) Zmacs command 75
(m-SPACE) Zmacs command 59
m-SUSPEND 256
Multiple buffers 65
Multiple Buffers: Program Development Tools and

Techniques 65
Multiple Edit Callers (m-X) Zmacs command 44
Multiple List Callers (m-X) Zmacs command 44
multiple-value special form 116
Multiple windows 65
Multiple Windows: Program Development Tools and

Techniques 65
Must Compile 329
(m-W) Zmacs command 60

March 1985

Abort Patch
Add Patch

Add Patch Changed Definitions
Add Patch Changed Definitions of Buffer

Finish Patch
Recompile Patch

Reload Patch
Resume Patch

Select Patch
Start Patch

Start Private Patch
View Patches

Atom Word Mode
Auto Fill Mode
Compile Buffer

Compile Changed Definitions
Compile File

Compile Region
Complier Warnings

Deinstall Macro
Describe Flavor

o ired
Disassemble
Edit Callers

Edit Changed Definitions
Edit Changed Definitions Of Buffer

Edit Combined Methods
Edit Compiler Warnings

Edit File Warnings
Edit Methods

Electric Shift Lock Mode
Evaluate And Replace Into Buffer

Evaluate Buffer
Evaluate Changed Definitions

Evaluate Into Buffer
Fill Long Comment

Find Unbalanced Parentheses
Function Apropos

Insert Buffer
Insert File

Install Macro
Install Mouse Macro

Usp Mode
Ust Callers

Ust Changed Definitions
Ust Changed Definitions Of Buffer

Ust Combined Methods
List Matching Lines

List Matching Symbols
List Methods

Load Compiler Warnings
Load File

Macro Expand Expression All
Multiple Edit Callers
Multiple List Callers

Name Last Kbd Macro
Print Modifications

Reparse Attribute Ust
Select All Buffers As Tag Table

Select System As Tag Table
Set Backspace

Set Base

(m-X) 243
(m-X) 240
(m-X) 241
(m-X) 241
(m-X) 242
(m-X) 243
(m-X) 244
(m-X) 243
(m-X) 242
(m-X) 239
(m-X) 240
(m-X) 242
m-X Debugger command 264, 271
(m-X) Zmacs command 12
(m-X) Zmacs command 12
(m-X) Zmacs command 70
(m-X) Zmacs command 70
(m-X) Zmacs command 73
(m-X) Zmacs command 316
(m-X) Zmacs command 79, 321
(m-X) Zmacs command 64
(m-X) Zmacs command 141
(m-X) Zmacs command 45
(m-X) Zmacs command 104
(m-X) Zmacs command 44
(m-X) Zmacs command 56
(m-X) Zmacs command 56
(m-X) Zmacs command 142
(m-X) Zmacs command 79, 321
(m-X) Zmacs command 321
(m-X) Zmacs command 65, 142
(m-X) Zmacs command 12
(m-X) Zmacs command 75
(m-X) Zmacs command 75
(m-X) Zmacs command 75
(m-X) Zmacs command 75
(m-X) Zmacs command 23
(m-X) Zmacs command 26
(m-X) Zmacs command 41
(m-X) Zmacs command 63
(m-X) Zmacs command 63
(m-X) Zmacs command 64
(m-X) Zmacs command 64
(m-X) Zmacs command 12
(m-X) Zmacs command 38, 44
(m-X) Zmacs command 56
(m-X) Zmacs command 56
(m-X) Zmacs command 142
(m-X) Zmacs command 57
(m-X) Zmacs command 38
(m-X) Zmacs command 142
(m-X) Zmacs command 79, 321
(m-X) Zmacs command 73
(m-X) Zmacs command 100
(m-X) Zmacs command 44
(m-X) Zmacs command 44
(m-X) Zmacs command 64
(m-X) Zmacs command 56
(m-X) Zmacs command 10
(m-X) Zmacs command 57
(m-X) Zmacs command 57
(m-X) Zmacs command 10
(m-X) Zmacs command 10

363

Index

364

Program Development Utilities

N

0

Set Fonts
Set Key

Set Lowercase
Set Nofill

Set Package
Set Patch File
Set Tab Width

Set Vsp
Source Compare

Source Compare Merge
Split Screen

Tags Query Replace
Tags Search

Trace
Update Attribute Ust

View Directory
Where Is Symbol

Yank Pop
Query Replace

Inspecting a

Format of patch file

Indent

Adding
Indent

Adding

Set

Major version
Minor version

Compiled function
Inspecting a compiled code

Inspecting
Complied code

Attributes

March 1985

N

(m-X) Zmacs command 10
(m-X) Zmacs command 64
(m-X) Zmacs command 10
(m-X) Zmacs command 10
(m-X) Zmacs command 10
(m-X) Zmacs command 10
(m-X) Zmacs command 10
(m-X) Zmacs command 10
(m-X) Zmacs command 56
(m-X) Zmacs command 56
(m-X) Zmacs command 65
(m-X) Zmacs command 57
(m-X) Zmacs command 57
(m-X) Zmacs command 92, 94
(m-X) Zmacs command 10
(m-X) Zmacs command 45
(m-X) Zmacs command 38
m-Y input editor command 77
(m-Y) Zmacs command 60
(m-%) Zmacs command 57

named structure 299
Name Last Kbd Macro (m-X) Zmacs command
:name Option for defsystem 194
names 236
Names of Patch Files 236
Names: Program Development Tools and

Techniques 41
New Comment Une (m-L I NE) Zmacs command
:newest symbol In make-system :verslon

option 222
New Keywords to make-system 227
New Une (LINE) Zmacs command 26
New Options to defsystem 214
:nll option for trace 92
:noconflrm Option for make-system 222
Nofill (m-X) Zmacs command 10
:no-Increment-patch Option for make-system
:noload Option for make-system 223
:noop Option for make-system 223
:noselectlve Option for load-patches 245
note-prlvate-patch function 244
:not-In-disk-Iabel Option for defsystem 196
:nowam Option for load-patches 246
:nowam Option for make-system 222.
number 231
number 231, 238
Numbers in compiled code files 331

0
object 309
object 299
Objects 35
objects 298
objects In compiled code files 331
Objects: Program Development Tools and

Techniques 35
:obsolete system status 251
(of buffers) 10

N
64

23

223

0

March 1985

Advising

Functions That

Generic

Compiler Source-level
:argpdl trace
:break trace
:cond trace

:entrycond trace
:entryprlnt trace

:entry trace
:error trace

:exltbreak trace
:exltcond trace
:exltprlnt trace

:exlt trace
:Iatest symbol in make-system :verslon

:newest symbol in make-system :verslon
:per-process trace

:prlnt trace
:released symbol in make-system :verslon

:step. trace
:whereln trace

:package option for the :module
:default-Inlt-pllst
:documentatlon

:geHable-lnstance-variables
:Inltable-Instance-varlables

:requ I red-flavors
:requlred-methods

:bug-reports
:component-systems

:Inltlal-status
:malntalnlng-sHes

:module
:name

:not-In-dlsk-Iabel
:package

:patchable
patch-atom argument to :patchable

:palhname-default
:short-name
:noselectlve

:nowam
:selective

:silent
:system List

System-name
:verbose

:batch
:complle

:Increment-patch
:noconflrm

:no-Increment-patch
:noload

:noop
:nowam

:prlnt-only
:recomplle

365

Index

One Function Within Another 285
One Window (c-X 1) Zmacs command 65
Open Get Register (c-X G) Zmacs command 63
Operate on a System 251
:operation-handled-p method of

sl:vanilla-flavor 142
operations 112
Optimizer feature of the compiler 327
Optimizers 327
Option 2n
Option 276
Option 276
Option 276
Option 2n
Option 277
Option 276
Option 276
Option 276
Option 2n
Option 2n
option 222
option 222
Option 2n
Option 2n
option 222
Option 276
Option 2n
option 199
option for defflavor 116
option for defflavor 141
option for defflavor 113
option for defflavor 124, 126
option for defflavor 116
option for defflavor 113
Option for defsystem 196
Option for defsystem 197
Option for defsystem 196
Option for defsystem 196
Option for defsystem 199
Option for defsystem 194
Option for defsystem 196
Option for defsystem 194
Option for defsystem 195, 231, 235
option for defsystem 236
Option for defsystem 195, 231, 235
Option for defsystem 194
Option for load-patches 245
Option for load-patches 246
Option for load-patches 245, 246
Option for load-patches 246
Option for load-patches 245
Option for load-patches 245
Option for load-patches 245, 246
option for make-system 79, 222
Option for make-system 222
Option for make-system 223
Option for make-system 222
Option for make-system 223
Option for make-system 223
Option for make-system 223
Option for make-system 222
Option for make-system 223
Option for make-system 223

366

Program Development Utilities

:reload
:selective

:sllent
:update-dlrectory

:verslon
:package

:arg
:argpdl

:both
:break
:cond
:entry

:entrycond
:entryprlnt

:error
:exlt

:exltbreak
:exltcond
:exltprlnt

:nll
:per-process

:prlnt
:step

:value
:whereln
:function

:edges-from init
:expose-p init

:mlnlmum-height init
:mlnlmum-wldth init

:process init
:bllnker-p init

Debugger Proceed and Restart
defsystem

Adding New

:arg
:argpdl

:both
:break
:cond
:entry

:entrycond
:entryprlnt

:error
:exlt

:exltbreak
:exltcond
:exitprint

:print
:step

:value
:whereln

Debugger Commands That Gall
Scroll

Zmacs and

Finding

Option for make-system 223
Option for make-system 222
Option for make-system 222
Option for make-system 226
Option for make-system 223
option for the :module option 199
option for trace 92
option for trace 92
option for trace 92
option for trace 92, 98
option for trace 92
option for trace 92
option for trace 92
option for trace 92
option for trace 92, 98
option for trace 92
option for trace 92, 98
option for trace 92
option for trace 92
option for trace 92
option for trace 92
option for trace 92
option for trace 92, 94
option for trace 92
option for trace 92

March 1985

option for tv:choose-varlable-values 133
option for tv:essentlal-window 116
option for tv:essentlal-window 116
option for tv:essential-window 116
option for tv:essentlal-window 116
option for tv:process-mlxin 129
option for tv:sheet 116
Options 256
Options 194
Options to defsystem 214
Options to trace 276
option to trace 278
option to trace 277
option to trace 278
option to trace 276
option to trace 276
option to trace 277
option to trace 276
option to trace 277
option to trace 276
option to trace 278
option to trace 276
option to trace 276
option to trace 277
option to trace 277
option to trace 276
option to trace 278
option to trace 277
Organization of Patch Files 235
Organization of Tools and Techniques 4
Other Displays: Program Development Tools and

Techniques 68
Other Systems 264
Other Window (c-m-V) Zmacs command 65
Other Window (c-X 0) Zmacs command 65
Other Windows: Program Development Tools and

Techniques 66
Out About Existing Code 35

March 1985

Commenting

Clearing the Trap-an-exit Flag for the Current and All
Setting the Trap-on-exit Flag for the Current and All

Program Development: Design and Figure

p

Controlling the Format of trace
Flavors for Lgp

trace
Program Development: Modifying the

Graphic
Simple Screen

Other Window (c-X

Set

The Inspector History
The Inspector Inspection
The Inspector Interaction

The Inspector Menu
Inspection
Balancing

Find Unbalanced
Balancing

Current
In-progress

Send mail about

patch-atom argument to
Changing the Status of a

Add
Add

File types of the
Active

Loading
Making
Inactive

View

Add region to
Install

Set
Format of
Individual
Names of

Organization of
Types of

p

367

Index

Out Code: Program Development Tools and
Techniques 83

Outer Frames 266
Outer Frames 266
Outline 13
Outlining the Figure: Program Development Tools and

Techniques 16
Output 279
Output 124
output 279
Output Module 112
Output Module for the Sample Program 165
Output of the Sample Program 185
Output: Program Development Tools and

Techniques 14
OVerriding Variable-defined-but -never-referenced

Warnings 326
OVerview of Peek 303
0) Zmacs command 65

Package (m-X) Zmacs command 10
:package Option for defsystem 194
:package option for the :module option 199
Packages 10. 16. 38. 44
Pane 297
Pane 298
Pane 297
Pane 298
Pane Display 299
Parentheses 26
Parentheses (m-X) Zmacs command 26
Parentheses: Program Development Tools and

Techniques 26
Patch 231
patch 242
patch 242
patch 242
:patchable Option for defsystem 195, 231. 235
:patchable option for defsystem 236
Patchable System 251
patCh-atom argument to :patchable option for

defsystem 236
Patch Changed Definitions (m-X) 241
Patch Changed Definitions of Buffer (m-X) 241
Patch Directory File 234
patch directory file 236
patches 238. 242
patches 231. 244
Patches 238
patches 242
Patches (m-X) 242
Patch Facility 231
Patch file 231
patch file 238
patch file 242
Patch File (m-X) Zmacs command 10
patch file names 236
Patch Files 235
Patch Files 236
Patch Files 235
Patch Files 233

p

368

Program Development Utilities

81:
Abort

Add
Finish

Recompile
Reload

Resume
Select

Start
Start Private

Initial
In-progress

81:

Loading System Definitions That Use Logical
Loading System Definitions That Use Physical

OVerview of
Set sleep time between updates

The

Loading System Definitions That Use

Swap
Move To Previous

Describe Variable At
Push Pop

Set
Yank
Push

Jump To Saved
Save

A Mixin to

Select
Move To

Start
Debugger

March 1985

Patch level 250
patch-loaded-p function 250
Patch (m-X) 243
Patch (m-X) 240
Patch (m-X) 242
Patch (m-X) 243
Patch (m-X) 244
Patch (m-X) 243
Patch (m-X) 242
Patch (m-X) 239
Patch (m-X) 240
patch state 242
patch state 242
patch-system-pathname function 237
:pathname-default Option for defsystem 195, 231,

235
Path names 45
Path names 217
Path names 219
Pathnames: Program Development Tools and

Techniques 45
Peek 303
Peek command 303
peek function 304
Peek Help Message 303
Peek Program 301
:per-process option for trace 92
[Per Process] trace menu item 92
:per-process trace Option 277
Physical Pathnames 219
pkg-goto function 16
pllst function 38
Point And Mark (c-X c-X) Zmacs command 59
Point (c-m-SPACE) Zmacs command 59
Point (c-sh-V) Zmacs command 39
Point Explicit (m-SPACE) Zmacs command 59
Pop Mark (c-SPACE) Zmacs command 59
Pop (m-Y) Zmacs command 60
Pop Point Explicit (m-SPACE) Zmacs command 59
Position (c-X J) Zmacs command 59
Position (c-X S) Zmacs command 59
Position the Figure 113
Prerequisites to Tools and Techniques 3
Previous Buffer (c-m-L) Zmacs command 59
Previous Point (c-m-SPACE) Zmacs command 59
Primary methods 113, 116, 121
[Print after] trace menu item 92
[Print before] trace menu item 92
Print compiler warnings database 321
print-compiler-warnings function 321
Print Modifications (m-X) Zmacs command 56
:prlnt-only Option for make-system 223
:prlnt option for trace 92
:prlnt option to trace 277
prlnt-system-modificatlons function 250
[Print] trace menu item 92
:prlnt trace Option 277
Private Patch (m-X) 240
Proceed and Restart Options 256
Proceeding 133
Proceeding From the Error in the Debugger:

Resume 261
:proceed method 133

March 1985

Display status of active
The Arrow Window: Interaction.

:process Init option for tv:
tv:

[Per

calculation Module for the Sample
Graphic Output of the Sample
Output Module for the Sample

The Peek

Aligning Code:
Argument Lists:

Balancing Parentheses:
Before You Begin:

Breakpoints:
callers:

Commenting Out Code:
Comments:
Completion:

Copying Buffers and Files:
Creating a File:

Definitions:
Documentation:

Editing Code:
Entering Zmacs:

Expanding Macros:
File Attribute Lists:

Functions:
General Information on Flavors:

Getting Started:
HELP:

Identifying Changed Code:
Init Keywords:

Keyboard Macros:
Killing and Yanking:

Lisp Input Editing:
Major and Minor Modes:

Methods:
Moving Text:

Moving Through Text:
Multiple Buffers:

Names:
Objects:

Other Displays:
Outlining the Figure:

Pathnames:
Program Strategy:

Searching and Replacing:
Signalling Conditions:

Simple Screen Output:
Stepping:
Symbols:

The Compiler Warnings Database:

Proceed types 80. 133
Processes 129
processes 303
Processes. and the Mouse 129
:process Init option for tv:process-mlxln 129
process-mlxln 129
process-mlxln flavor 129
Process] trace menu hem 92
progn 310
Program 147
Program 185
Program 165
Program 301

369

Index

Program Development: Design and Figure Outline 13
Program Development: Drawing Stripes 27
Program Development: Modifying the Output

Module 112
Program Development: Refining Stripe Density and

Spacing 45
Program Development Tools and Techniques 1
Program Development Tools and Techniques 26
Program Development Tools and Techniques 43
Program Development Tools and Techniques 26
Program Development Tools and Techniques 7
Program Development Tools and Techniques 98
Program Development Tools and Techniques 44
Program Development Tools and Techniques 83
Program Development Tools and Techniques 23
Program Development Tools and Techniques 8
Program Development Tools and Techniques 63
Program Development Tools and Techniques 9
Program Development Tools and Techniques 40
Program Development Tools and Techniques 42
Program Development Tools and Techniques 56
Program Development Tools and Techniques 9
Program Development Tools and Techniques 100
Program Development Tools and Techniques 10
Program Development Tools and Techniques 40
Program Development Tools and Techniques 141
Program Development Tools and Techniques 9
Program Development Tools and Techniques 7
Program Development Tools and Techniques 56
Program Development Tools and Techniques 144
Program Development Tools and Techniques 64
Program Development Tools and Techniques 60
Program Development Tools and Techniques 77
Program Development Tools and Techniques 12
Program Development Tools and Techniques 142
Program Development Tools and Techniques 59
Program Development Tools and Techniques 59
Program Development Tools and Techniques 65
Program Development Tools and Techniques 41
Program Development Tools and Techniques 35
Program Development Tools and Techniques 68
Program Development Tools and Techniques 16
Program Development Tools and Techniques 45
Program Development Tools and Techniques 13
Program Development Tools and Techniques 57
Program Development Tools and Techniques 133
Program Development Tools and Techniques 14
Program Development Tools and Techniques 94
Program Development Tools and Techniques 38
Program Development Tools and Techniques 79

370

Program Development Utilities

Q

R

The Debugger:
The Inspector:

Tracing:
Tracing and Stepping:

Using Multiple Windows:
Using Registers:

Variables:
Zmacs and Other Windows:

Debugging Usp
Maintaining Large

compller:top-Ievel-form

Tags

81:

#M sharp-sign
#0 sharp-sign

Special Characters

sl:
Program Development:

Compile
Une

Indent
Compile
Evaluate

Save
Compile

Add
Open Get

Put

Using

Q

R

March 1985

Program Development Tools and Techniques 80
Program Development Tools and Techniques 104
Program Development Tools and Techniques 92
Program Development Tools and Techniques 92
Program Development Tools and Techniques 65
Program Development Tools and Techniques 63
Program Development Tools and Techniques 39
Program Development Tools and Techniques 66
Programming Aids for Flavors and Windows 141
Programs 79
Programs 187
Program Strategy: Program Development Tools and

Techniques 13
prompt-and-read function 133
property 315
Purpose of Tools and Techniques 3
Push Pop Point Expllcl1 (m-SPACE) Zmacs

command 59
Put Register (c-X X) Zmacs command 63
Putting Data in Compiled Code Files 331

query-Io variable 133
Query Replace (m-X) Zmacs command 57
Query Replace (m-~) Zmacs command 57
query-type variable 229
Quick Arglist (c-sh-A) Zmacs command 43
Qul1 (c-Z) Zmacs command 80

reader macro 329
reader macro 329
:readflle Transformation of defsystem 209
Rebound Variable Bindings During Evaluation
Recognized by the Inspector 300
:recompile Option for make-system 223
Recompile Patch (m-X) 243
* redo-all * variable 229
Refining Stripe Densl1y and Spacing 45
:refresh method of tv:sheet 116, 129
Region 316
region 297
Region (c-m-\) Zmacs command 26
Region (c-sh-C) Zmacs command 70
Region (c-sh-E) Zmacs command 75
Region (m-W) Zmacs command 60
Region (m-X) Zmacs command 316
region to patch file 238
Register (c-X G) Zmacs command 63
Register (c-X X) Zmacs command 63
Registers 63
Registers: Program Development Tools and

Techniques 63
:released symbol in make-system :verslon

option 222
:released system status 251
:reload Option for make-system 223
Reload Patch (m-X) 244
Reparse Attribute Ust (m-X) Zmacs command
Replace (c-~) Zmacs command 57

Q

R

260

10

March 1985

s

Evaluate And
Tags Query

Query

Searching and

Sending a Bug

Bug

Debugger Proceed and

Proceeding From the Error in the Debugger:

Debugger functions to

Calculation Module for the
Graphic Output of the
Output Module for the

Jump To

Converting Lgp to
Split

Simple

[Edit
[Split

Reverse
Incremental

Tags

Inspecting a

s

371

Index

Replace Into Buffer (m-X) Zmacs command 75
Replace (m-X) Zmacs command 57
Replace (m-~) Zmacs command 57
Replacing 57
Replacing: Program Development Tools and

Techniques 57
Report in the Debugger 264
:report method 133
reports 264, 271
:requlred-flavoro option for demavor 116
:requlred-methodn option for defflavor 113
Resources 126
Restart handlers 80
Restart Options 256
RESUME 75, 98
Resume 261
RESUME Debugger command 264, 271
Resume Patch (m-X) 243
[Retry] Display Debugger menu item 80
[Return] Inspector menu item 104, 298
return values in current stack frame 267
RETURN Zmacs minibuffer command 8
Reverse Search (c-R) Zmacs command 57

Sample Program 147
Sample Program 185
Sample Program 165
Saved Position (c-X J) Zmacs command 59
Save Position (c-X S) Zmacs command 59
Save Region (m-W) Zmacs command 60
Scope of Tools and Techniques 3
Screen Coordinates 121
Screen (m-X) Zmacs command 65
Screen Output: Program Development Tools and

Techniques 14
Screen] System menu item 66, 129
Screen] System menu item 66, 129
Scroll Other Window (c-m-V) Zmacs command 65
Search (c-R) Zmacs command 57
Search (c-S) Zmacs command 57
Searching 57
Searching and Replacing: Program Development

Tools and Techniques 57
Search (m-X) Zmacs command 57
Select Activity command 9
Select All Buffers As Tag Table (m-X) Zmacs

command 57
Select Buffer (c-X B) Zmacs command 59
SELECT E 9
SELECT I 104, 295
:aelectlve Option for load-patches 245, 246
:selectlve Option for make-system 222
select method 299
Select Patch (m-X) 242

s

Select Previous Buffer (c-m-L) Zmacs command 59
Select System As Tag Table (m-X) Zmacs

command 57
:send-command method of

Igp:baslc-Igp-stream 124
:send-coordlnates method of

Igp:baslc-Igp-stream 124

372

Program Development Utilities

zwel:

fs:

al:
sl:

Kill
Indent

Backward Kill
#M
#0.

:bllnker-p Inlt option for tv:
:change-of-slze-or-marglns method of tv:

:lnl1 method of tv:
:Inslde-slze method of tv:

:refresh method of tv:
tv:
tv:

Electric

dbg:

sl:

March 1985

Sending a Bug Report In the Debugger 264
Send mall about patch 242
aend-mall-about-patch 242
Set Backspace (m-X) Zmacs command 10
Set Base (m-X) Zmacs command 10
Set Comment Column (c-X ;) Zmacs command 23
Set Fill Column (c-X F) Zmacs command 12
Set Fonts (m-X) Zmacs command 10
Set Key (m-X) Zmacs command 64
set-logical-path name-host 218
Set Lowercase (m-X) Zmacs command 10
Set Nofill (m-X) Zmacs command 10
Set Package (m-X) Zmacs command 10
Set Patch File (m-X) Zmacs command 10
Set Pop Mark (c-SPACE) Zmacs command 59
Set sleep time between updates Peek command 303
aet-system-file-propertles function 252
set-system-source-file 217. 218. 219
aet-system-status function 251
Set Tab Width (m-X) Zmacs command 10
Setting the Trap-on-exlt Flag for the Current and All

Outer Frames 266
Set Vsp (m-X) Zmacs command 10
[Set \1 Inspector menu Item 298
Sexp (c-m-K) Zmacs command 60
Sexp (c-m-Q) Zmacs command 26
Sexp (c-m-RUBOUT) Zmacs command 60
sharp-sign reader macro 329
sharp-sign reader macro 329
sheet 116
sheet 116
sheet 116
sheet 116
aheet 116. 129
sheet flavor 116. 133
sheet-followlng-bllnker function 133
Shift Lock Mode (m-X) Zmacs command 12
:short-name Option for defsystem 194
show-backtrace variable 268
sl:advlse-1 function 283
al:advlsed-functlons variable 283
al:*batch-mode-p* variable 229
al :define-defsystem-speclal-varlable special

form 214
sl:deflne-make-system-speclal-varlable special

form 227
sl:define-slmple-transformatlon special form 214
sl:*file-transformatlon-functlon* variable 229
sl:flavor-allowed-Inlt-keywords function 144
sl:get-release-verslon function 250
al:get-system-verslon function 249
algnal function 112. 133
Signalling conditions 133
Signalling Conditions: Program Development Tools

and Techniques 133
:sllent Option for load-patches 246
:sllent Option for make-system 222
sllent-p variable 229
si:make-hardcopy-stream function 126
al :*make-system-forms-to-be-evaled-after*

variable 229
sl:*make-system-forms-to-be-evaled-before*

variable 228

March 1985

:fasload
Tools for Compiling

Sys:
Sys:
Sys:

:operatlon-handled-p method of
:whlch-operatlons method of

Set
File Types of Usp

System
COmpiler

Program Development: Refining Stripe Density and

Debugger
advise

advise-within
break

compller:add-optlmizer
compller:make-message-obsolete

compller:make-obsolete
conditlon-blnd

defconst
defsystem

defvar
defwlndow-resource

error-restart-Ioop
eval-when

*expr
*fexpr
*Iexpr

multiple-value
sl:define-defsystem-speclal-variable

sl:deflne-make-system-speclal-varlable
sl:deflne-slmple-transformatlon

special

sl:*make-system-forms-to-be-evaled-finally*
variable 229

sl:map-system-files function 252

373

Index

Simple Screen Output: Program Development Tools
and Techniques 14

simple transformation 201
Single Functions 318
sl:patch-Ioaded-p function 250
sl:patch-system-pathname function 'ZJ7
sl:*query-type* variable 229
sl:*redo-all* variable 229
sl:set-system-file-properties function 252
sl:set-system-source-file 217, 218, 219
sl:*sllent-p* variable 229
sl:*system-belng-defined* variable 214
sl:*system-belng-made* variable 228
sl:system-verslon-Info function 249
site;Logica/-host.Translations File 218
site;System-name.System File 217
site;system-name.system file 218
sl:*top-Ievel-transformatlons* variable 229
sl:*trace-bar-p* variable 279
sl:*trace-bar-rate* variable 279
sl:*trace-columns-per-Ievel* variable 279
sl:*trace-old-style* variable 280
sl:unadvlse-1 function 283
sl:unbln-lIle function 300
sl:vanllla-fiavor 142
sl:vanllla-fiavor 142
sl:vanllla-fiavor flavor 142
:sklp defsystem Macro 213
sleep time between updates Peek command 303
Source and COmplied Code Files 318
Source COmpare Merge (m-X) Zmacs command 56
Source COmpare (m-X) Zmacs command 56
source files 'ZJ1
Source-level Optimizers 327
SPACE Stepper command 94
SPACE Zmacs minibuffer command 8
Spacing 45
Special Characters Recognized by the Inspector 300
special commands 80
special form 281
special form 285
special form 98
special form 327
special form 324
special form 3'ZJ
special form 133
special form 70
special form 57, 191, 'ZJ1
special form 16, 70
special form 126
special form 129
special form 314
special form 325
special form 325
special form 325
special form 116
special form 214
special form 227
special form 214
special form 314

374

Program Development Utilities

trace
unadvlse

unadvlse-wlthln
unspeclal

untrace
unwlnd-protect

with-open-stream

Module

Backtrace of the call
Manipulating the control

Current
Debugger functions to return values In current

Inspecting a
Examining the Current

Examining

Debugger Commands for

Getting

Initial patch
In-progress patch
:broken system

:experlmental system
:obsolete system
:released system

System
Display

Changing the
Display
Display
Display
Display

c-B
c-E
c-N
c-u
c-X

HELP
SPACE

TraCing and

Debugger Commands for Dynamic Breakpoints and

Program

special form 92, 94, 98, 275
special form 282
special form 285
special form 314
special form 92, 280
special form 133
special form 126
special special form 314
specification 199
Specifying compiler environments 329
Split Screen (m-X) Zmacs command 65

March 1985

'[Split Screen] System menu Item 66, 129
s-sh-C Debugger command 264, 271
stack 268
stack 264, 271
stack frame 264, 271
stack frame 267
stack frame 299
Stack Frame In the Debugger 262
Stack Frames with Debugger Backtrace

Commands 262
Stack Manipulation 263
standard-output variable 75
Started: Program Development Tools and

Techniques 9
Start Kbd Macro (c-X () Zmacs command 64
Start Patch (m-X) 239
Start Private Patch (m-X) 240
state 242
state 242
status 251
status 251
status 251
status 251
status 303
status of active processes 303
Status of a Patchable System 251
status of areas 303
status of file system display 303
status of hostat 303
status of window area 303
step function 94, 287
:step option for trace 92, 94
:step option to trace 276
Stepper 94
Stepper command 94
Stepper command 94
Stepper command 94
Stepper command 94
Stepper command 94
Stepper command 94
Stepper command 94
Stepping 75. 94
Stepping: Program Development Tools and

Techniques 94
Stepping: Program Development Tools and

Techniques 92
Stepping Through an Evaluation 287
Stepping Through Compiled Code 267
[Step] trace menu Item 92. 94
:step trace Option 276
Strategy: Program Development Tools and

Techniques 13

March 1985

How the
Mouse documentation

Documentation
Program Development: Refining
Program Development: Drawing

Inspecting a named

Compiler

Inspecting a
:Iatest

: newest
:released
Where Is

Ust Matching

Keeping Track of Usp

Changing the Status of a Patchable
Defining a

Functions That Operate on a
Getting Information About a

Making a
Select

sl:
81:

Compile
Load

Loading the
Loading
Loading

Display status of file

Introduction to the

Display

[Inspect] in
[Attributes]

[Edit]
[Edit Screen]

[Inspect]
[Split Screen]

[Trace]

Stream compiler 309
Stream Compiler Handles Top-level Forms 310
string 129
strings 39, 42
Stripe Density and Spacing 45
Stripes 27
structure 299
Structure of the Complier 309
Style Warnings 323

375

Index

Summary of Compiler Actions on Code in a Zmacs
Buffer 71

Summary of Debugger Commands 271
Summary of Debugging Aids 273
SUSPEND 75
Swap Point And Mark (c-X c-X) Zmacs

command 59
symbol 299
symbol in make-system :verslon option 222
symbol In make-system :verslon option 222
symbol in make-system :verslon option 222
Symbol (m-X) Zmacs command 38
Symbols 38
Symbols in compiled code files 331
Symbols (m-X) Zmacs command 38
Symbols: Program Development Tools and

Techniques 38
Syntax 23
sys:abort flavor 129
oys:dump-forms-to-flle function 331
Gys:fHe-local-declaratlons variable 324
Sys:site;Logical-host. Translations File 218
Sys:site;System-name.System File 217
Sys:slte;syslem-name.system file 218
System 189
System 251
System 191
System 251
System 249
System 221
System As Tag Table (m-X) Zmacs command 57
system-belng-defined variable 214
system-belng-made variable 228
System command 217
System command 217
System Declaration File 218
System Definition 217
System Definitions That Use Logical Pathnames 217
System Definitions That Use Physical Pathnames 219
system display 303
System facility 189
System Facility 189
System file 217
system Information 304
system Ust Option for load-patches 245
System maintenance 231
system menu 295
System menu item 141
System menu item 9
System menu item 66, 129
System menu item 104
System menu item 66, 129
System menu item 92, 94
System-name Option for load-patches 245

376

Program Development Utilities March 1985

T

Debugger Commands That Call Other
Updating

:broken
:experimental

:obsolete
:released

File types of the
sl:

Save Position (c-X

Select All Buffers As Tag
Select System As Tag

Tag
Indent For Lisp

Set

T

Systems 264
systems 231
System source files 231
System status 303
system status 251
system status 251
system status 251
system status 251
System Version-directory File 233
system verslon-directory file 236
system-verslon-Info function 249
System versions 231
S) Zmacs command 59

Table (m-X) Zmacs command 57
Table (m-X) Zmacs command 57
tables 57
(TAB or c-m-TAB) Zmacs command 26
Tab WId1h (m-X) Zmacs command 10
Tags Query Replace (m-X) Zmacs command 57
Tags Search (m-X) Zmacs command 57

Select All Buffers As Tag Table (m-X) Zmacs command 57
Select System As Tag Table (m-X) Zmacs command 57

Tag tables 57
Aligning Code: Program Development Tools and Techniques 26

Argument Lists: Program Development Tools and Techniques 43
Balancing Parentheses: Program Development Tools and

Techniques 26
Before You Begin: Program Development Tools and Techniques 7

Breakpoints: Program Development Tools and Techniques 98
Callers: Program Development Tools and Techniques 44

Commenting Out Code: Program Development Tools and
Techniques 83

Comments: Program Development Tools and Techniques 23
Completion: Program Development Tools and Techniques 8

Copying Buffers and Files: Program Development Tools and
Techniques 63

Creating a File: Program Development Tools and Techniques 9
Definitions: Program Development Tools and Techniques 40

Deriving Methods for Tools and Techniques 3
Documentation: Program Development Tools and Techniques 42

Editing Code: Program Development Tools and Techniques 56
Entering Zmacs: Program Development Tools and Techniques 9

Expanding Macros: Program Development Tools and Techniques 100
Features Described in Tools and Techniques 4

File Attribute Lists: Program Development Tools and Techniques 10
Functions: Program Development Tools and Techniques 40

General Information on Flavors: Program Development Tools and
Techniques 141

Getting Started: Program Development Tools and Techniques 9
HELP: Program Development Tools and Techniques 7

Identifying Changed Code: Program Development Tools and
Techniques 56

Inlt Keywords: Program Development Tools and Techniques 144
Introduction to Tools and Techniques 3

Keyboard Macros: Program Development Tools and Techniques 64
Killing and Yanking: Program Development Tools and Techniques 60

Lisp Input Editing: Program Development Tools and Techniques 77
Major and Minor Modes: Program Development Tools and

Techniques 12
Methods: Program Development Tools and Techniques 142

T

377

March 1985 Index

Moving Text: Program Development Tools and Techniques 59
Moving Through Text: Program Development Tools and

Techniques 59
Multiple Buffers: Program Development Tools and Techniques 65

Names: Program Development Tools and Techniques 41
Objects: Program Development Tools and Techniques 35

Organization of Tools and Techniques 4
Other Displays: Program Development Tools and Techniques 68

Outlining the Figure: Program Development Tools and Techniques 16
Pathnames: Program Development Tools and Techniques 45

Prerequisites to Tools and Techniques 3
Program Development Tools and Techniques 1

Program Strategy: Program Development Tools and Techniques 13
Purpose of Tools and Techniques 3

Scope of Tools and Techniques 3
Searching and Replacing: Program Development Tools and

Techniques 57
Signalling Conditions: Program Development Tools and

Techniques 133
Simple Screen Output: Program Development Tools and

Techniques 14
Stepping: Program Development Tools and Techniques 94
Symbols: Program Development Tools and Techniques 38

The Compiler Warnings Database: Program Development Tools and
Techniques 79

The Debugger: Program Development Tools and Techniques 80
The Inspector: Program Development Tools and Techniques 104

Tracing and Stepping: Program Development Tools and
Techniques 92

Tracing: Program Development Tools and Techniques 92
Using Multiple Windows: Program Development Tools and

Techniques 65
Using Registers: Program Development Tools and Techniques 63

Variables: Program Development Tools and Techniques 39
Zmacs and Other Windows: Program Development Tools and

Killing
Moving

Yanking
Moving

Techniques 66
termlnal-Io variable 14, 112
text 60
text 59
text 60
Text: Program Development Tools and

Techniques 59
Moving Through Text: Program Development Tools and

Debugger Commands
Files

Functions
Debugger Commands

Loading System Definitions
Loading System Definitions

Compiler Tools and
Set sleep

Aligning Code: Program Development
Argument Usts: Program Development

Balancing Parentheses: Program Development
Before You Begin: Program Development

Breakpoints: Program Development
Callers: Program Development

Commenting Out Code: Program Development
Comments: Program Development
Completion: Program Development

Techniques 59
That Call Other Systems 264
That Maclisp Must Compile 329
That Operate on a System 251
That Trap on Frame Exit 266
That Use Logical Pathnames 217
That Use Physical Path names 219
Their Differences 316
time between updates Peek command 303
Toggling the Trap-on-exlt Flag for the Current

Frame 266
Tools and Techniques 26
Tools and Techniques 43
Tools and Techniques 26
Tools and Techniques 7
Tools and Techniques 98
Tools and Techniques 44
Tools and Techniques 83
Tools and Techniques 23
Tools and Techniques 8

378

Program Development Utilities March 1985

Copying Buffers and Files: Program Development Tools and Techniques 63
Creating a File: Program Development Tools and Techniques 9

Defini1ions: Program Development Tools and Techniques 40
Deriving Methods for Tools and Techniques 3

Documentation: Program Development Tools and Techniques 42
Editing Code: Program Development Tools and Techniques 56

Entering Zmacs: Program Development Tools and Techniques 9
Expanding Macros: Program Development Tools and Techniques 100

Features Described in Tools and Techniques 4
File Attribute Usts: Program Development Tools and Techniques 10

Functions: Program Development Tools and Techniques 40
General Information on Flavors: Program Development

Tools and Techniques 141
Getting Started: Program Development Tools and Techniques 9

HELP: Program Development Tools and Techniques 7
Identifying Changed Code: Program Development Tools and Techniques 56

Init Keywords: Program Development Tools and Techniques 144
Introduction to Tools and Techniques 3

Keyboard Macros: Program Development Tools and Techniques 64
Killing and Yanking: Program Development Tools and Techniques 60

Usp Input Editing: Program Development Tools and Techniques 77
Major and Minor Modes: Program Development Tools and Techniques 12

Methods: Program Development Tools and Techniques 142
Moving Text: Program Development Tools and Techniques 59

Moving Through Text: Program Development Tools and Techniques 59
Multiple Buffers: Program Development Tools and Techniques 65

Names: Program Development Tools and Techniques 41
Objects: Program Development Tools and Techniques 35

Organization of Tools and Techniques 4
Other Displays: Program Development Tools and Techniques 68

Outlining the Figure: Program Development Tools and Techniques 16
Pathnames: Program Development Tools and Techniques 45

Prerequisites to Tools and Techniques 3
Program Development Tools and Techniques 1

Program Strategy: Program Development Tools and Techniques 13
Purpose of Tools and Techniques 3

Scope of Tools and Techniques 3
Searching and Replacing: Program Development Tools and Techniques 57

Signalling Conditions: Program Development Tools and Techniques 133
Simple Screen Output: Program Development Tools and Techniques 14

Stepping: Program Development Tools and Techniques 94
Symbols: Program Development Tools and Techniques 38

The Compiler Warnings Database: Program Development

The Debugger: Program Development
The Inspector: Program Development

Tracing and Stepping: Program Development
Tracing: Program Development

Using Multiple Windows: Program Development
Using Registers: Program Development

Variables: Program Development
Zmacs and Other Windows: Program Development

Compiler

complier:
Controlling the Evaluation of

How the Stream Compiler Handles
The

81:
Move

Tools and Techniques 79
Tools and Techniques 80
Tools and Techniques 104
Tools and Techniques 92
Tools and Techniques 92
Tools and Techniques 65
Tools and Techniques 63
Tools and Techniques 39
Tools and Techniques 66
Tools and Their Differences 316
Tools for Compiling Code From the Editor Into Your

World 316
Tools for Compiling Files 317
Tools for Compiling Single Functions 318
top-level-form property 315
Top-level Forms 314
Top-level Forms 310
Top-level Function 126
*top-level-transformations· variable 229
To Previous Point (c-m-SPACE) Zmacs command 59

March 1985

Jump
:arg option for
:arg option to

:argpdl option for
:argpdl option to

:both option for
:both option to

:break option for
:break option to
:cond option for
:cond option to

:entrycond option for
:entrycond option to

:entry option for
:entry option to

:entryprlnt option for
:entryprlnt option to

:error option for
:error option to

:exltbreak option for
:exHbreak option to
:exltcond option for
:exltcond option to

:exlt option for
:exlt option to

:exltprlnt option for
:exltprlnt option to

:nll option for
Options to

:per-process option for
:prlnt option for
:prlnt option to
:step option for
:step option to

:value option for
:value option to

:whereln option for
:whereln option to

sl:
sl:
sl:

[ARGPDL]
[Break after]

[Break before]
[Cond after]

[Cond before]
[Cond break after]

[Cond break before]
[Conditionaa

[Error]
[Per Process]

[Print]
[Print after]

[Print before]
[Step]

[Untrace]
[Wherein]

sl:
:argpdl
:break
:cond

379

Index

To Saved Position (c-X J) Zmacs command 59
trace 92
trace 278
trace 92
trace 2n
trace 92
trace 278
trace 92, 98
trace 276
trace 92
trace 276
trace 92
trace 276
trace 92
trace 2n
trace 92
trace 2n
trace 92, 98
trace 276
trace 92, 98
trace 276
trace 92
trace 276
trace 92
trace 278
trace 92
trace 2n
trace 92
trace 276
trace 92
trace 92
trace 2n
trace 92, 94
trace 276
trace 92
trace 278
trace 92
trace 2n
trace-bar-p variable 279
trace-bar-rate variable 279
trace-columns-per-Ievel variable 279
trace-compile-flag variable 279
trace menu item 92
trace menu item 92
trace menu item 92
trace menu item 92
trace menu item 92
trace menu item 92, 98
trace menu item 92, 98
trace menu item 92
trace menu item 92, 98
trace menu item 92
trace menu item 92
trace menu item 92
trace menu item 92
trace menu item 92, 94
trace menu item 92
trace menu l1em 92
Trace (m-X) Zmacs command 92, 94
trace-old-style variable 280
trace Option 2n
trace Option 276
trace Option 276

380

Program Development Utilities

:entry
:entrycond
:entryprlnt

:error
:exlt

:exltbreak
:exltcond
:exltprlnt

:per-process
:prlnt
:step

:wherein

Controlling the Format of

Keeping
:complle-load compound

:fasload simple
:complle

:complle-Ioad
:complle-load-Inlt
:do-components

:fasload
:Ioad-bfd
: readfl Ie

Compile-like
Complex

defsystem
Ust of defsystem

Load-like
User-defined

Interaction Between defsystem

Clearing the

Setting the

Toggling the
Debugger Commands That

:any-tyl method of

:function option for

:edges-from Init option for
:expose-p init option for

:mlnlmum-helght Init option for
:mlnlmum-wldth Init option for

:draw-ilne method of

:process Init option for

:bllnker-p init option for
:change-of-slze-or-marglns method of

trace Option 277
trace Option 276
trace Option 277
trace Option 276
trace Option 277
trace Option 276
trace Option 276
trace Option 277
trace Option 277
trace Option 277
trace Option 276
trace Option 277
trace output 279
trace Output 279
trace special form 92, 94, 98, 275
[Trace] System menu item 92, 94
TraCing 92

March 1985

Tracing and Stepping: Program Development Tools
and Techniques 92

Tracing Function Execution 275
Tracing: Program Development Tools and

Techniques 92
Track of Usp Syntax 23
transformation 201
transformation 201
Transformation of defsystem 209
Transformation of defsystem 210
Transformation of defsystem 211
Transformation of defsystem 210
Transformation of defsystem 209
Transformation of defsystem 210
Transformation of defsystem 209
transformations 214
transformations 214
Transformations 201, 210, 211
Transformations 209
transformations 214
transformations 214, 227
Transformations and make-system 202
Translations file 218
Trap-on-exit Flag for the Current and All Outer

Frames 266
Trap-on-exit Flag for the Current and All Outer

Frames 266
Trap-on-exit Flag for the Current Frame 266
Trap on Frame Exit 266
tv:any-tyl-mlxln 129
tv:any-tyl-mlxln flavor 129
tv:choose-varlable-values 133
tv:choose-varlable-values function 126, 133
tv:essentlal-wlndow 116
tv:essential-window 116
tv:essential-wlndow 116
tv:essentlal-wlndow 116
tv:graphlcs-mlxln 14, 116
tv:graphlcs-mlxln flavor 116
tv:lIst-mouse-buttons-mlxln flavor 129
tv:make-bllnker function 133
tv:make-wlndow function 112. 121. 126, 129
tv:process-mlxln 129
tv:process-mlxln flavor 129
tv:sheet 116
tv:sheet 116

March 1985

U

v

:Inlt method of
:Inslde-slze method of

:refresh method of

View
Modified
bin file

Proceed
File

File
File

sl:

Find
al:

381

Index

tv:sheet 116
tv:sheet 116
tv:sheet 116, 129
tv:sheet flavor 116, 133
tv:sheet-followlng-bllnker function 133
tv:wlndow flavor 112, 116
Two Windows (c-X 2) Zmacs command 65
Two Windows (c-X 3) Zmacs command 65
Two Windows (c-X 4) Zmacs command 65
type 318
typep function 141
types 80, 133
Types of Usp Source and Compiled Code Flies 318
Types of Patch Flies 233
types of the patch directory file 236
types of the system verslon-dlrectory file 236

u U
unadvlse-1 function 283
unadvlse special form 282
unadvlse-wlthln speciaJ form 285
UnbaJanced Parentheses (m-X) Zmacs command 26
unbln-flle function 300
unbreakon function 98
uncomplle function 319
unspeclal special form 314
untrace speciaJ form 92, 280
[Untrace] trace menu item 92
Untraclng Function Execution 280
unwlnd-protect special form 133
Up Comment Une (m-P) Zmacs command 23
Update Attribute Ust (m-X) Zmacs command 10
Update complier warnings database 321
:update-dlrectory Option for make-system 226

Set sleep time between updates Peek command 303
Updating systems 231

Functions used inside the Debugger 267
User-defined transformations 214, 227

q:

Debugger functions to return
Examining

:operatlon-handled-p method of sl:
:whlch-operatlons method of sl:

sl:
applyhook

argllst
compller:tunctlons-deflned

compller:functlons-referenced
dbg:*debug-Io-overrlde*

dbg:*defer-package-dwlm*
dbg:*frame*

c:IJg :*show-backtrace*
evalhook

Ignore
query-Io

V
val function 268
:value option for trace 92
:value option to trace 278
values in current stack frame 267
vaJues of instance variables 267
values variable 98, 276
vanilla-flavor 142
vanilla-flavor 142
vanilla-flavor flavor 142
variable 291
variable 98, 276
variable 324
variable 325
variable 268
variable 268
variable 268
variable 268
variable 289
variable 324
variable 133

v

382

Program Development Utilities

w

II:advlsed-functlonl
sl:*batch-mode-p*

sl:*file-transformatlon-functlon*
11:*make-system-forms-to-be-evaled-afler*

II :*make-system-forms-to-be-evaled-before*
sl :*make-system-forms-to-be-evaled-flnally*

11:*query-type*
II :*redo-all*
II :*llIent-p*

11:*lystem-belng-deflned*
11:*IYltem-belng-made*

11:*top-level-transformatlons*
sl:*trace-bar-p*

II :*trace-bar-rate*
11:*trace-columns-per-level*

al :*trace-old-atyle*
standard-output

Iys:flle-Iocal-declaratlons
termlnal-Io

trace-complle-flag
values

Describe
Rebound

OVerriding

Complier
Debugger

Examining values of instance
Instance

Major
Minor

File types of the system
System

Major
Minor

:Iatest symbol In make-system
:newest symbol in make-system

:released symbol in make-system

System

Set

Complier
Compiler Style

ContrOlling Compiler
Function-referenced-but-never -defined

OVerriding Variable-defined-but-never-referenced
Compiler

Print compiler
Update compiler

The Compiler

Compiler
Edit Compiler

Edit File

March 1985

variable 283
variable 229
variable 229
variable 229
variable 228
variable 229
variable 229
variable 229
variable 229
variable 214
variable 228
variable 229
variable 279
variable 279
variable 279
variable 280
variable 75
variable 324
variable 14, 112
variable 279
variable 98, 276
Variable At Point (c-sh-V) Zmacs command 39
Variable Bindings During Evaluation 260
Variable-defined-but-never-referenced Warnings 326
Variables 39
variables 324
Variables 268
variables 267
variables 113, 124, 126
Variables: Program Development Tools and

Techniques 39
:verbose Option for load-patches 245, 246
version 236
version 236
verslon-directory file 236
Version-directory File 233
version number 231
version number 231, 238
:verslon option 222
:verslon option 222
:verslon option 222
:verslon Option for make-system 223
versions 231
View Directory (m-X) Zmacs command 45
View Patches (m-X) 242
View Two Windows (c-X 3) Zmacs command 65
Vsp (m-X) Zmacs command 10

w
warnings 65, 70, 79
Warnings 323
Warnings 323
Warnings 324
Warnings 326
Warnings Database 321
warnings database 321
warnings database 321

w

Warnings Database: Program Development Tools and
Techniques 79

Warnings (m-X) Zmacs command 79, 321
Warnings (m-X) Zmacs command 79, 321
Warnings (m-X) Zmacs command 321

March 1985

Load Complier

Mark

Set Tab
Choose-variable-values

The Basic Arrow
Display status of

Scroll Other
One

Other
tv:

The Arrow
Multiple

Programming Aids for Flavors and
Using Flavors and

Two
View Two

Modified Two
Using Multiple

Zmacs and Other

Advising One Function

Atom
How the Inspector

Tools for Compiling Code From the Editor Into Your

x
Put Register (c-X

y

Killing and

Before

Tools for Compiling Code From the Editor Into

Z

Compiling Code In a
Summary of Complier Actions on Code in a

Atom Word Mode (m-X)

X

Y

Z

Warnings (m-X) Zmacs command 79. 321
what-files-call function 38
:whereln option for trace 92
:wherein option to trace 277
[Wherein] trace menu item 92
:wherein trace Option 277
where-Is function 38

383

Index

Where Is Symbol (m-X) Zmacs command 38
:whlch-operatlons method of sl:vanllla-fiavor 142
who-calls function 38
Whole (c~X H) Zmacs command 63
:who-line-documentation-strfng method 129
Whoppers 116
Width (m-X) Zmacs command 10
window 126. 129
Window 116
window area 303
Window (c-m-V) Zmacs command 65
Window (c-X 1) Zmacs command 65
Window (c-X 0) Zmacs command 65
window flavor 112. 116
Window: Interaction. Processes. and the Mouse 129
windows 65
Windows 141
Windows 111
Windows (c-X 2) Zmacs command 65
Windows (c-X 3) Zmacs command 65
Windows (c-X 4) Zmacs command 65
Windows: Program Development Tools and

Techniques 65
Windows: Program Development Tools and

Techniques 66
Within Another 285
wlth-open-stream special form 126
Word Mode (m-X) Zmacs command 12
Works 295
World 316
Writing ~nd Editing Code 7

X) Zmacs command 63

Yank (c-Y) Zmacs command 60
Yanking: Program Development Tools and

Techniques 60
Yanking text 60
Yank Pop (m-Y) Zmacs command 60
You Begin: Program Development Tools and

Techniques 7
Your World 316

Zmacs and Other Windows: Program Development
Tools and Techniques 66

Zmacs Butler 70
Zmacs Butler 71
Zmacs command 12

X

V

Z

384

Program Development Utilities

Auto Fill Mode (m-X)
Backward Kill Sexp (c-m-RUBOUT)

Beep (c-G)
Brief Documentation (c-sh-O)
call Last Kbd Macro (c-X E)

Compile Buffer (m-X)
Compile Changed Definitions (m-X)

Compile Changed Definitions Of Buffer (m-sh-C)
Compile File (m-X)

Compile Region (c-sh-C)
Compile Region (m-X)

Complier Warnings (m-X)
c-sh-C

Delnstall Macro (m-X)
Describe Flavor (m-X)

Describe Variable At Point (c-sh-V)
Dlred (m-X)

Disassemble (m-X)
Display Directory (c-X c-D)
Down Comment Une (m-N)

Edit Callers (m-X)
Edit Changed Definitions (m-X)

Edit Changed Definitions Of Buffer (m-X)
Edit Combined Methods (m-X)
Edit Complier Warnings (m-X)

Edit Definition (m-.)
Edit File Warnings (m-X)

Edit Methods (m-X)
Electric Shift Lock Mode (m-X)

End Kbd Macro (c-X)
Evaluate And Replace Into Buffer (m-X)

Evaluate Buffer (m-X)
Evaluate Changed Definitions (m-X)

Evaluate Changed Definitions Of Buffer (m-sh-E)
Evaluate Into Buffer (m-X)

Evaluate Minibuffer (m-ESCAPE)
Evaluate Region (c-sh-E)
Fill Long Comment (m-X)

Find File (c-X c-F)
Find Unbalanced Parentheses (m-X)

Function Apropos (m-X)
HELP

Incremental Search (c-S)
Indent For Comment (c-; or m-;)
Indent For Lisp (TAB or c-m-TAB)

Indent New Comment Line (m-L I NE)
Indent New Line (l I NE)

Indent Region (c-m-\)
Indent Sexp (c-m-Q)

Insert Buffer (m-X)
Insert File (m-X)

Install Macro (m-X)
Install Mouse Macro (m-X)

Jump To Saved Position (c-X J)
Kill Comment (c-m-;)

Kill Sexp (c-m-K)
Lisp Mode (m-X)

List Callers (m-X)
List Changed Definitions (m-X)

List Changed Definitions Of Buffer (m-X)
List Combined Methods (m-X)

List Matching Lines (m-X)
List Matching Symbols (m-X)

Zmacs command 12
Zmacs command 60
Zmacs command 59
Zmacs command 39, 42
Zmacs command 64
Zmacs command 70
Zmacs command 70
Zmacs command 70
Zmacs command 73
Zmacs command 70
Zmacs command 316
Zmacs command 79, 321
Zmacs command 316
Zmacs command 64
Zmacs command 141
Zmacs command 39
Zmacs command 45
Zmacs command 104
Zmacs command 45
Zmacs command 23
Zmacs command 44
Zmacs command 56
Zmacs command 56
Zmacs command 142
Zmacs command 79, 321
Zmacs command 40, 141, 142
Zmacs command 321
Zmacs command 65,142
Zmacs command 12
Zmacs command 64
Zmacs command 75
Zmacs command 75
Zmacs command 75
Zmacs command 75
Zmacs command 75
Zmacs command 75
Zmacs command 75
Zmacs command 23
Zmacs command 9
Zmacs command 26
Zmacs command 41
Zmacs command 7, 64
Zmacs . command 57
Zmacs command 23
Zmacs command 26
Zmacs command 23
Zmacs command 26
Zmacs command 26
Zmacs command 26
Zmacs command 63
Zmacs command 63
Zmacs command 64
Zmacs command 64
Zmacs command 59
Zmacs command 23
Zmacs command 60
Zmacs command 12
Zmacs command 38,44
Zmacs command 56
Zmacs command 56
Zmacs command 142
Zmacs command 57
Zmacs command 38

March 1985

March 1985

Ust Methods (m-X)
Load Compiler Warnings (m-X)

Load File (m-X)
Long Documentation (m-sh-D)

Macro Expand Expression All (m-X)
Macro Expand Expression (c-sh-M)

Mark Definition (c-m-H)
Mark Whole (c-X H)

Modified Two Windows (c-X 4)
Move To Previous Point (c-m-SPACE)

Multiple Edit Callers (m-X)
Multiple Ust Callers (m-X)

Name Last Kbd Macro (m-X)
One Window (c-X 1)

Open Get Register (c-X G)
Other Window (c-X D)

Print Modifications (m-X)
Push Pop Point Explicit (m-SPACE)

Put Register (c-X X)
Query Replace (m-~)

Quick Arglist (c-sh-A)
Quit (c-Z)

Reparse Attribute Ust (m-X)
Replace (c-~)

Reverse Search (c-R)
Save Position (c-X S)

Save Region (m-lJ)
Scroll Other Window (c-m-V)

Select All Buffers As Tag Table (m-X)
Select Buffer (c-X B)

Select Previous Buffer (c-m-L)
Select System As Tag Table (m-X)

Set Backspace (m-X)
Set Base (m-X)

Set Comment Column (c-X ;)
Set Fill Column (c-X F)

Set Fonts (m-X)
Set Key (m-X)

Set Lowercase (m-X)
Set Nofill (m-X)

Set Package (m-X)
Set Patch File (m-X)

Set Pop Mark (c-SPACE)
Set Tab Width (m-X)

Set Vsp (m-X)
Source Compare Merge (m-X)

Source Compare (m-X)
Spilt Screen (m-X)

Start Kbd Macro (c-X (
Swap Point And Mark (c-X c-X)

Tags Query Replace (m-X)
Tags Search (m-X)

Trace (m-X)
Two Windows (c-X 2)

Up Comment Une (m-P)
Update Attribute Ust (m-X)

View Directory (m-X)
View Two Windows (c-X 3)

Where Is Symbol (m-X)
Yank (c-V)

Yank Pop (m-V)
tr Dlred (c-X D)

c-?

Zmacs command 142
Zmacs command 79,321
Zmacs command 73
Zmacs command 39, 42
Zmacs command 100
Zmacs command 100
Zmacs command 60
Zmacs command 63
Zmacs command 65
Zmacs command 59
Zmacs command 44
Zmacs command 44
Zmacs command 64
Zmacs command 65
Zmacs command 63
Zmacs command 65
Zmacs command 56
Zmacs command 59
Zmacs command 63
Zmacs command 57
Zmacs command 43
Zmacs command 80
Zmacs command 10
Zmacs command 57
Zmacs command 57
Zmacs command 59
Zmacs command 60
Zmacs command 65
Zmacs command 57
Zmacs command 59
Zmacs command 59
Zmacs command 57
Zmacs command 10
Zmacs command 10
Zmacs command 23
Zmacs command 12
Zmacs command 10
Zmacs command 64
Zmacs command 10
Zmacs command 10
Zmacs command 10
Zmacs command 10
Zmacs command 59
Zmacs command 10
Zmacs command 10
Zmacs command 56
Zmacs command 56
Zmacs command 65
Zmacs command 64
Zmacs command 59
Zmacs command 57
Zmacs command 57
Zmacs command 92, 94
Zmacs command 65
Zmacs command 23
Zmacs command 10
Zmacs command 45
Zmacs command 65
Zmacs command 38
Zmacs command 60
Zmacs command 60
Zmacs command 45
Zmacs mlnibuffer command 8

385

Index

386

Program Development Utilities

\

COMPLETE
END

HELP
RETURN

SPACE
Entering

\

Zmacs mlnlbuffer command 8
Zmacs mlnibuffer command 8
Zmacs mlnibuffer command 8
Zmacs mlnibuffer command 8
Zmacs mini buffer command 8
Zmacs: Program Development Tools and

Techniques 9
zwel:*send-maJl-about-patch* 242

[Set \l Inspector menu item 298

tr Dired (c-X D) Zmacs command 45

March 1985

\

