symbolics

Program Develop
Utilities

ment

Program Development
Utilities

symbolics

Cambridge, Massachusetts

Program Development Utilities
996045

February 1985

This document corresponds to Release 6.0 and later releases.

The software, data, and information contained herein are proprietary to, and comprise
valuable trade secrets of, Symbolics, Inc. They are given in confidence by Symbolics
pursuant to a written license agreement, and may be used, copied, transmitted, and
stored only in accordance with the terms of such license.

This document may not be reproduced in whole or in part without the prior written
consent of Symbolics, Inc.

Copyright © 1985, 1984, 1983, 1982, 1981, 1980 Symbolics, Inc. All Rights Reserved.
Font Library Copyright @ 1984 Bitstream Inc. All Rights Reserved.

Symbolics, Symbolics 3600, Symbolics 3670, Symbolics 3640, SYMBOLICS-LISP,
ZETALISP, MACSYMA, S-GEOMETRY, S-PAINT, and S-RENDER are trademarks of
Symboalics, Inc.

Restricted Rights Legend

Use, duplication, or disclosure by the government is subject to restrictions as set forth
in subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software Clause
at FAR 52.227-7013.

Text written and produced on Symbolics 3600-family computers by the Documentation
Group of Symbolics, Inc.

Text typography: Century Schoolbook and Helvetica produced on Symbolics 3600-
family computers from Bitstream, Inc., outlines; text masters printed on Symbolics LGP-1
Laser Graphics Printers.

Cover design: Schafer/LaCasse

Cover printer: W.E. Andrews Co., Inc.

Text printer: ZBR Publications, Inc.

Printed in the USA.
Printing year and number: 87 86 859876543 21

iii

February 1985

Table of Contents

I. Program Development Tools and Techniques

1. Introduction

11
1.2
13
14
15
16

Purpose
Prerequisites
Scope
Method
Features
Organization

2. Writing and Editing Code

- 21

2.2

23

24

2.5
2.6

2.7
2.8

Before You Begin

2.1.1 HELP

2.1.2 Completion

Getting Started

2.2.1 Entering Zmacs

2.2.2 Creating a File

2.2.3 File Attribute Lists

2.2.4 Major and Minor Modes
Program Development: Design and Figure Outline

2.3.1 Program Strategy

2.3.2 Simple Screen Output

2.3.3 Outlining the Figure
Keeping Track of Lisp Syntax

2.4.1 Comments

2.4.2 Aligning Code

2.4.3 Balancing Parentheses
Program Development: Drawing Stripes
Finding Out About Existing Code

2.6.1 Objects

2.6.2 Symbols

2.6.3 Variables

2.6.4 Functions

2.6.5 Pathnames
Program Development: Refining Stripe Density and Spacing
Editing Code

2.8.1 Identifying Changed Code

2.8.2 Searching and Replacing

2.8.3 Moving Text

Program Development Utilities

Page

D OWW-3-3 a1 >hCIwWeLw W (=

10

iv

Program Development Utilities February 1985

2.8.4 Keyboard Macros
2.8.5 Using Multiple Windows

3. Compiling and Evaluating Lisp

3.1 Compiling Lisp Code
3.1.1 Compiling Code in a Zmacs Buffer
3.1.2 Compiling and Loading a File
3.2 Evaluating Lisp Code
3.2.1 Evaluation and the Editor
3.2.2 Lisp Input Editing

4. Debugging Lisp Programs

4.1 The Compiler Warnings Database
4.2 The Debugger
4.3 Commenting Out Code
4.4 Tracing and Stepping
4.4.1 Tracing
4.4.2 Stepping
4.5 Breakpoints
4.6 Expanding Macros
4.7 The Inspector

6. Using Flavors and Windows

5.1 Program Development: Modifying the Output Module
5.1.1 A Mixin to Position the Figure
5.1.2 The Basic Arrow Window
5.1.3 Converting Lgp to Screen Coordinates
5.1.4 Flavors for Lgp Output
5.1.5 The Top-level Function
5.1.6 The Arrow Window: Interaction, Processes, and the Mouse
5.1.7 Signalling Conditions
5.2 Programming Aids for Flavors and Windows
5.2.1 General Information on Flavors
5.2.2 Methods
5.2.3 Init Keywords

6. Calculation Module for the Sample Program
7. Output Module for the Sample Program
8. Graphic Output of the Sample Program

II. Maintaining Large Programs

&R

70
70
73
75
75
77

79

79
80
83
92
92
94
98
100
104

11

112
113
116
121
124
126
129
133
141
141
142
144

147
165
185
187

v

February 1985

9. Introduction to the System Facility

10. Defining a System

10.1 defsystem Modules
10.2 defsystem Transformations

10.2.1 Interaction Between defsystem Transformations and

make-system
10.2.2 List of defsystem Transformations
10.2.3 :skip defsystem Macro
10.3 Adding New Options to defsystem

11. Loading the System Definition

11.1 Loading System Definitions That Use Logical Pathnames

11.1.1 Sys:site;System-name.System File
11.1.2 Sys:site;Logical-host. Translations File
11.1.3 System Declaration File

11.2 Loading System Definitions That Use Physical Pathnames

12. Making a System
12.1 Adding New Keywords to make-system

13. Patch Facility

13.1 Types of Patch Files
13.1.1 System Version-directory File
13.1.2 Patch Directory File
13.1.3 Individual Patch Files
13.1.4 Organization of Patch Files
13.1.5 Names of Patch Files

13.2 Making Patches
13.2.1 Start Patch (m-X)
13.2.2 Start Private Patch (mn-X)
13.2.3 Add Patch (m-X)

13.2.4 Add Patch Changed Definitions of Buffer (m-X)

13.2.5 Add Patch Changed Definitions (m-X)
13.2.6 Select Patch (m-X)

13.2.7 View Patches (n-X)

13.2.8 Finish Patch (m-X)

13.2.9 Abort Patch (m-X)

13.2.10 Resume Patch (m-X)

13.2.11 Recompile Patch (m-X)

13.2.12 Reload Patch (m-X)

Program Development Ultilities

189

191

198
201
202

209
213
214

217

217
217
218
218
219

221
227
231

233
233
234
235
235
236
238
239
240
240
241
241
242
242
242
243
243
243
244

vi

Program Development Ulilities

14.
16.

16.

17.

18.
19.

13.3 Loading Patches
Getting Information About a System

Functions That Operate on a System
15.1 Changing the Status of a Patchable System

II. Debugger

Entering the Debugger

16.1 Entering the Debugger by Causing an Error
16.1.1 Error Display

16.2 Entering the Debugger with m-SUSPEND

16.3 Entering the Debugger with the dbg Function

How to Use the Debugger

17.1 Evaluating a Form in the Debugger
17.1.1 Rebound Variable Bindings During Evaluation
17.2 Exiting From the Debugger: Abort
17.3 Debugger Help
17.4 Proceeding From the Error in the Debugger: Resume
17.5 Examining the Current Stack Frame in the Debugger
17.6 Examining Stack Frames with Debugger Backtrace Commands
17.7 Debugger Commands for Stack Manipulation
17.8 Debugger Commands That Call Other Systems
17.8.1 Entering the Editor From the Debugger
17.8.2 Sending a Bug Report
17.8.3 Entering the Display Debugger
17.9 Debugger Commands for Information Display
17.10 Debugger Commands That Trap on Frame Exit
17.11 Debugger Commands for Dynamic Breakpoints and Stepping
Through Compiled Code
17.12 Debugger Functions
17.13 Debugger Variables

Summary of Debugger Commands
Summary of Debugging Aids

February 1985

244
249

261
251

253

255

255
255
256
256

2569

259
260
261
261
262
262
262
263
264
264
264
265
265
266
267

267
268

271
273

vii

February 1985

20.

21.

22.
23.

24.

25.

26.

27.

Tracing Function Execution

20.1 Options to trace
20.2 Controlling the Format of trace Output
20.3 Untracing Function Execution

Advising a Function

21.1 Designing the Advice
21.2 :around Advice
21.3 Advising One Function Within Another

Stepping Through an Evaluation

evalhook
23.1 applyhook

IV. The Inspector

Using the Inspector

24.1 How the Inspector Works
24.2 Entering and Leaving the Inspector
24.3 The Inspector Interaction Pane
24.4 The Inspector History Pane
24.5 The Inspector Menu Pane
24.6 The Inspector Inspection Pane
24.6.1 Inspection Pane Display
24.7 Special Characters Recognized by the Inspector
248 Examining a Compiled Code File

V. The Peek Program
Peek
VI. The Compiler

Introduction to the Compiler
26.1 How to Invoke the Compiler

Structure of the Compiler

27.1 How the Stream Compiler Handles Top-level Forms
27.1.1 Controlling the Evaluation of Top-level Forms
27.2 Function Compiler
27.3 bin File Dumper
27.4 Compiler Tools and Their Differences
27.4.1 Tools for Compiling Code From the Editor Into Your World

Program Development Utilities

275

276
279
280

281

283
284
285

287

289
290

293

295

295
295
297
297
298
298
299
300
300

301
303
305

307
307

310
314
315
316
316
316

viii

Program Development Utilities March 1985

27.4.2 Tools for Compiling Files
27.4.3 Tools for Compiling Single Functions

28. Compiler Warnings Database

29. Controlling Compiler Warnings
29.1 Compiler Style Warnings
29.2 Function-referenced-but-never-defined Warnings
29.2.1 Overriding Variable-defined-but-never-referenced Warnings
30. Compiler Source-level Optimizers
31. Files That Maclisp Must Compile
32. Putting Data in Compiled Code Files

Index

317
318

321

323

323
324
326

327
329
331

ix

February 1985

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Figure 5.

Figure 6.

Figure 7.
Figure 8.

Figure 9.

Figure 10.
Figure 11.
Figure 12.

Figure 13.
Figure 14.

Program Development Ultilities

List of Figures

Program output with only the outlines of the arrows in the figure.
Program output with stripes of even spacing and density.
Program output with stripes of varying spacing and density.
Using multiple windows to test the program while viewing the
source code.
Edit Compiler Warnings (m-X) splits the screen. The upper
window contains compiler warnings. The lower window contains
the source code.
The Display Debugger: inspecting the stack frame containing a
call to compute-dens.
The Display Debugger: inspecting the variable *x2*.
Output resulting from a faulty attempt to outline the small arrows
recursively.
Output resulting from a faulty attempt to outline the small arrows
recursively, with the second function call commented out.
Output resulting from a corrected attempt to outline the small
arrows recursively, with the second function call commented out.
Output from the program with a bug in the function
draw-arrow-shaft-stripes. _
The Inspector window: inspecting an instance of a structure.
The Inspector window: inspecting an instance of a flavor.
The Inspector.

22
36
55
67

81

R

90
91
102
106

108
296

X

Program Development Utilities February 1985

xi

February 1985

Table 1.

List of Tables

Trace Menu Items and trace Options

Program Development Utilities

95

Xii

Program Development Ulilities February 1985

1
February 1985 Program Development Tools and Techniques

PART I

Program Development Tools and Techniques

2

Program Development Ulilities February 1985

3

February 1985 Program Development Tools and Techniques

1. Introduction

11 Purpose

In this document we introduce the Lisp programming environment of the Symbolics
Lisp Machine. Using a single example program, we present one style of interacting
with that environment in developing Lisp programs. We do not prescribe a "best"
style of programming on the Symbolics Lisp Machine. Rather, we suggest some
techniques and combinations of features that expert Lisp Machine programmers
advocate. You might find these techniques useful in developing a comfortable and
efficient Lisp Machine programming style of your own.

1.2 Prerequisites

This document is for you if you will be writing or maintaining Lisp programs and
have recently begun to use a Symbolics Lisp Machine. The document will be most
useful if you have some experience writing Lisp programs and are familiar with basic
features of the Symbolics Lisp Machine. The document is not a survey of Symbolics
Lisp Machine facilities, a reference manual, or a Lisp primer. You might find the
following Symbolics publications especially helpful when reading this document:

» See the document User’s Guide to Symbolics Computers.
» See the section "Program Development Help Facilities".

1.3 Scope

We focus in this document on interaction between programmers and the Symbolics
Lisp Machine. We present some ways of using Symbolics Lisp Machine features that
you might find helpful at each stage of program development. We mention some
broad issues of style in designing programs, including modularity and efficiency, but
we do not explore program structure in any depth. We do not discuss matters of
style in using Lisp, such as appropriate uses for structures and flavors.

This document corresponds to the Symbolics 3600-family computers.

1.4 Method

We derived the methods we describe here by working with programmers at
Symbolics. Some of these programmers were early developers of the Symbolics Lisp
Machine itself. Their styles vary. Like most programmers, they generally do not
follow a simple textbook sequence of designing, coding, compiling, debugging,
recompiling, testing, and debugging again. Instead, they develop programs in
repeated cycles, each a sequence of editing, compiling, testing, and debugging. These
cycles are often nested. For example, an error in testing a program invokes the
Debugger; from the Debugger the programmer types Lisp forms or calls the editor to
change and recompile code; an error in retesting code from the Debugger invokes the
Debugger again.

4

Program Development Ulilities February 1985

1.5 Features

Symbolics developers have designed the Symbolics Lisp Machine to accommodate a
relatively spontaneous and incremental programming style. Five Symbolics Lisp
Machine features make up the integrated programming environment described here.

e The Zetalisp environment. The Lisp system code allows you to write
programs that are extensions of the environment itself. You can
often produce complex programs with comparatively little new code.
Zetalisp flavors let you build data structures with complex modular
combinations of associated procedures and state information.

» The window system. Windows permit you to shift rapidly among
such activities as editing, evaluating Lisp, and debugging. You can
suspend an activity in one window, switch to another, and return
to the first without losing its state. You can display several
activities on the same screen. Because the window system is itself
implemented with Zetalisp flavors, you can modify or create
windows for special displays.

» The Zmacs text editor. Zmacs has sophisticated means of keeping
track of Lisp syntax. It interacts with the Zetalisp environment,
letting you find out about existing code and incorporate it into your
programs. Unlike some structure editors, Zmacs allows you to leave
definitions incomplete until you are ready to evaluate or compile
them.

» Dynamic compiling, linking, and loading. The compiler is always
loaded. You can use single-keystroke commands to compile and load
source code from a Zmacs buffer. You can write, compile, test, edit,
and recompile code in sections. When you recompile a function
definition, the function’s callers use the new definition.

« Interactive debugging. Errors invoke the Debugger in their dynamic
environments. From the Debugger you can examine the stack,
change values of variables and arguments, call the editor to change
and recompile source code, and reinvoke functions.

1.6 Organization

The sequence of steps in developing a program on the Symbolics Lisp Machine is too
complex to mirror in the linear organization of a document. We emphasize the
cyclical course of program development, but we have organized the document in a
simple way. We present the main programming sequence in the next three
chapters. These deal simply with writing and editing, evaluating and compiling, and
debugging code. We discuss particular Zetalisp functions, Zmacs commands, and
other features where they appear most useful or where they present alternatives to
common techniques.

The next three chapters require virtually no knowledge of flavors or the window

5

February 1985 Program Development Tools and Techniques

system. But knowing about flavors and windows is essential to advanced use of the
Symbolics Lisp Machine. For some simple uses of flavors and windows and some
programming aids for working with them: See the section "Using Flavors and
Windows", page 111.

Throughout, we use as an example the development of a single program that draws
the recursive arrows in the cover design for this document. Sandy Schafer and
Bernard LaCasse of Schafer/LaCasse created the original design. Richard Bryan of
Symbolics wrote and we revised a Lisp program that simulates it. For the complete
code: See the section "Calculation Module for the Sample Program", page 147. See
the section "Output Module for the Sample Program", page 165.

The code is also in the files SYS: EXAMPLES; ARROW-CALC LISP and

SYS: EXAMPLES; ARROW-OUT LISP. (To run the program, load

SYS: EXAMPLES; ARROW.) For a reproduction of the design produced on a
Symbolics LGP-1 Laser Graphics Printer: See the section "Graphic Output of the
Sample Program", page 185.

Many of the techniques and facilities we mention are helpful at more than one stage
of program development. Conversely, the Symbolics Lisp Machine provides many
paths for accomplishing tasks at each stage. As programmers at Symbolics gladly
acknowledge, there is more than one way to do almost anything on the Symbolics
Lisp Machine.

In the sections of this document that develop the Lisp code for the example
program, we use change bars to distinguish new or changed code from code that we
have already presented. Whenever we display a line of code that has not appeared
before, and whenever we change a line of code that has already appeared, we place a
vertical bar (]) next to that line in the left margin. This bar is not part of the code
itself. In the following example, we change two lines of the definition of
draw-big-arrow:

(defun draw-big-arrow ()
;; Determine coordinates of arrowhead vertexes
(multiple-value-bind
(xpIxx xplyx Xp2xx *p2y* *p5xx *pSyx Xp6x* Xxp6yx)
(compute-arrowhead-points)
;; Determine coordinates of shaft vertexes
(multiple-value-bind (Xp3x*x *xp3y* *plx*x *xplhyx)
(compute-arrow-shaft-points)
(draw-big-outline) ;0utline arrow
(when *xdo-the-stripesx
(stripe-arrowhead)))})) ;Stripe head

6

Program Development Ultilities February 1985

7

February 1985 Program Development Tools and Techniques

2. Writing and Editing Code

Symbolics Lisp Machine programmers seldom write programs in sequence, from
beginning to end, before testing them. They often leave definitions incomplete, skip
to other definitions, and then return to finish the incomplete forms. They search
for existing code to incorporate into new programs. They edit their work frequently,
changing code while writing, testing, and maintaining programs.

In this chapter we discuss Symbolics Lisp Machine features, particularly Zmacs
commands and Zetalisp functions, that make this style natural. Many of these
features are useful at other stages of programming as well: Editing techniques are
important in program maintenance, and methods of learning about existing code are
helpful in debugging.

To illustrate programming methods, we develop a program that draws the recursive
arrow design that appears on the cover of this book. (The program does not draw
the horizontal stripes outside the large arrow.) We produce the figure on a
Symbolics LGP-1 Laser Graphics Printer, a Symbolics Lisp Machine screen, or a file.
We develop the program in four stages, beginning with simple procedures to outline
the arrows and progressively modifying the code to refine the figure:

1. Drawing the borders of the large arrow and of the smaller
recursively drawn arrows that it encloses

2. Drawing the diagonal stripes within the figure, but with uniform
thickness and spacing

3. Changing the stripes to vary in thickness and spacing
4. Writing the routines that control the output destination

For the code for the sample program and a reproduction of the LGP image the
program produces: See the section "Calculation Module for the Sample Program”,
page 147. See the section "Output Module for the Sample Program", page 165. See
the section "Graphic Output of the Sample Program", page 185.

2.1 Before You Begin

Use the Zmacs text editor to write and edit programs. Zmacs has many features
that provide information about Zmacs commands, existing code, buffers, and files.
Two features are generally useful: the HELP key and completion. For details: See
the section "Program Development Help Facilities".

211 HELP
Pressing the HELP key in a Zmacs editing window gives information
about Zmacs commands and variables. The kind of information it
displays depends on the key you press after HELP.

Reference
HELP ? or HELP HELP Displays a summary of HELP options.

8

Program Development Utilities February 1985

HELP A Displays names, key bindings, and brief
descriptions of commands whose names
contain a string you specify. (A refers to
"apropos".)

HELP C Displays the name and brief description of
a command bound to a key you specify.

HELP D Displays long documentation for a command
you specify.

HELP L Displays a listing of the last 60 keys you
pressed.

HELP U Offers to "undo” the last major Zmacs
operation, such as sorting or filling, when
possible.

HELP V Displays the names and values of Zmacs
variables whose names contain a string you
specify.

HELP W Displays the key binding for a command
you specify. (W refers to "where".)

HELP SPRCE Repeats the last HELP command.

21.2 Completion

Some Zmacs operations require you to provide names — for
example, names of extended commands, Lisp objects, buffers, or
files. You usually supply names by typing characters into a
mintbuffer that appears near the bottom of the screen. Often you
do not have to type all the characters of a name; Zmacs offers
completion over some name spaces. When completion is available,
the word "Completion" appears in parentheses above the right side
of the minibuffer.

You can request completion when you have typed enough
characters to specify a unique word or name. For extended
commands and most other names, completion works on initial
substrings of each word. For example, m-X com b is sufficient to
specify the extended command Compile Buffer. SPACE, COMPLETE,
RETURN, and END complete names in different ways. HELP and
[Zmacs Window (R)] list possible completions for the characters you

have typed.

Reference ‘
SPACE Completes words up to the
current word.

9

February 1985 Program Development Tools and Techniques

HELP or c-7 Displays possible completions in
the typeout area.

[Zmacs Window (R)] Pops up a menu of possible
completions.

COMPLETE Displays the full name if possible.

RETURN or END Confirms the name if possible,
whether or not you have seen
the full name.

2.2 Getting Started

When Symbolics programmers begin to write new Lisp programs, they often follow
these steps:

1. Enter the Zmacs editor.
2. Create a buffer for a new file for the program.

3. Set the attributes of the buffer and file, including major and minor
modes.

2.21 Entering Zmacs
Use SELECT E, [Edit] from the System menu, or the Select Activity
command to enter Zmacs.

Reference
SELECT E Selects a Zmacs frame.

[Edit] (from the System menu) Selects a Zmacs frame.

Select Activity command Selects a Zmacs frame.

2.2.2 Creating a File
To store program code in a new file, use Find File (c-X c-F) to
create a buffer for the file at the beginning of the editing session.
You can then edit the file’s attributes or create an attribute list
that appears in the text. See the section "File Attribute Lists:
Program Development Tools and Techniques”, page 10. You will
not have to interrupt later work to name the file or check its
attributes before you save it.

Reference

Find File (c-X c-F) Creates and names a buffer for
the file, reading in the file if it
already exists.

10

Program Development Ultilities February 1985

2.2.3 File Attribute Lists

Each buffer and generic pathname has attributes, such as Package
and Base, which can also be displayed in the text of the buffer or
file as an attribute list. An attribute list must be the first
nonblank line of a file, and it must set off the listing of attributes
on each side with the characters "-*-". If this line appears in a file,
the attributes it specifies are bound to the values in the attribute
list when you read or load the file.

Suppose you want the new program to be part of a package named
graphics that contains graphics programs. In this case, you want
to set the Package attribute to graphics in three places: the
generic pathname’s property list; the buffer data structure; and the
buffer text. You can make the change in two ways:

If the package already exists in your Lisp environment, use Set
Package (m-x) to set the package for the buffer. The command
asks you whether or not to set the package for the file and
attribute list as well. You cannot use this command to create a
new package.

Use Update Attribute List (m-X) to transfer the current buffer
attributes to the file and create a text attribute list. Edit the
attribute list, changing the package. Use Reparse Attribute List
(m-X) to transfer the attributes in the attribute list to the file and
the buffer data structure. If the package you specify by editing the
attribute list does not exist in your Lisp environment, Reparse
Attribute List asks you whether or not to create it under global.

The default value of base and ibase is 10. If you have been
writing code that has a Base attribute in the mode line, you should
not experience any difficulties. However, in order to help avoid
problems in general, changes have also been made to the editor and
compiler:

In the mode line (the -*- line in Lisp source files) are the Base and
Syntax attributes. The base can be either 8 or 10 (default). The
syntax of a program can be either Zetalisp or Common-Lisp.

If there is a Base attribute, but no Syntax attribute, the syntax is
assumed to be Zetalisp.

If there is a Syntax: Common-Lisp attribute, and no Base attribute,
the base is assumed to be 10.

If there is neither a Base nor a Syntax attribute, Base is assumed
to be the default base (10) and the syntax is assumed to be
Zetalisp. Furthermore, a warning is issued to the effect that there

1

February 1985

Program Development Tools and Techniques

is neither a Syntax nor a Base attribute. You should edit your
program accordingly. With most programs, the Zmacs command
Update Attribute List (m-X) will add the appropriate attributes to
the mode line, following the above defaults.

When you specify a package by editing the attribute list, you can
explicitly name the package’s superpackage and, if you want, give
an initial estimate of the number of symbols in the package. (If
the number of symbols exceeds this estimate, the name space
expands automatically.) Instead of typing the name of the package,
type a representation of a list of the form (package superpackage
symbol-count). To indicate that the graphics package is inferior to
global and might contain 1000 symbols, type into the attribute list:

Package: (GRAPHICS GLOBAL 1000)

For more on file and buffer attributes: See the section "File
Attribute Lists" in Reference Guide to Streams, Files, and I/0.

Example

Suppose the package for the current buffer is user and the base is
8. We want to create a package called graphics for the buffer and
associated file. We also want to set the base to 10. If no attribute
list exists, we use Update Attribute List (m-X) to create one using
the attributes of the current buffer. An attribute list appears as
the first line of the buffer:

;33 -%- Mode: LISP; Package: USER; Base: 8 -x-

Now we edit the buffer attribute list to change the package
specification from USER to (GRAPHICS GLOBAL 1000) and to change the
base specification from 8 to 10. The text attribute list now appears
as follows:

;3; -¥- Mode: LISP; Package: (GRAPHICS GLOBAL 1000); Base: 10 -x-

Finally, we use Reparse Attribute List (m-X). The package becomes
graphics and the base 10 for the buffer and the file.

Reference

Set attribute (m—x) Sets attribute for the current
buffer. Queries whether or not
to set attribute for the file and in

12

Program Development Ulilities February 1985

the text attribute list. attribute is
one of the following: Backspace,
Base, Fonts, Lowercase, Nofill,
Package, Patch File, Syntax, Tab
Width, or Vsp.

Update Attribute List (m-X) Assigns attributes of the current
buffer to the associated file and
the text attribute list.

Reparse Attribute List (m-X) Transfers attributes from the
text attribute list to the buffer
data structure and the associated
file.

2.2.4 Major and Minor Modes

Each Zmacs buffer has a major mode that determines how Zmacs
parses the buffer and how some commands operate. Lisp Mode is
best suited to writing and editing Lisp code. In this major mode,
Zmacs parses buffers so that commands to find, compile, and
evaluate Lisp code can operate on definitions and other Lisp
expressions. Other Zmacs commands, including LINE, TAB, and
comment handlers, treat text according to Lisp syntax rules. See
the section "Keeping Track of Lisp Syntax", page 23.

If you name a file with one of the types associated with the
canonical type :lisp, its buffer automatically enters Lisp Mode.
Following are some examples of names of files of canonical type
:lisp:

Host system File name

Lisp Machine acme-blue:>symbolics>examples>arrow.1isp
TOPS-20 acme-20:<symbolics.examples>arrow.lisp
UNIX acme-vax:/symbolics/examples/arrow.1

You can also specify minor modes, including Electric Shift Lock
Mode and Atom Word Mode, that affect alphabetic case and cursor
movement. Whether or not you use these modes is a matter of
personal preference. If you want Lisp Mode to include these minor
modes by default, you can set a special variable in an init file. If
you want to exit one of these modes, simply repeat the extended
command. The command acts as a toggle switch for the mode.

Example

The following code in an init file makes Lisp Mode include Electric
Shift Lock Mode if the buffer’s Lowercase attribute is nil, as it is
by default:

13

February 1985

Program Development Tools and Techniques

(login-forms
(setf zwei:1isp-mode-hook :
*zwei:electric-shift-lock-if-appropriate))

Reference

Lisp Mode (m-X) Treats text as Lisp code in
parsing buffers and executing
some Zmacs commands.

Electric Shift Lock Mode (n-X) Places all text except comments
and strings in uppercase.

Atom Word Mode (m-X) Makes Zmacs word-manipulation
commands (such as m-F) operate
on Lisp symbol names.

Auto Fill Mode (m-X) Automatically breaks lines that
extend beyond a preset fill
column.

Set Fill Column (e-X F) Sets the fill column to be the

column that represents the
current cursor position. With a
numeric argument less than 200,
sets the fill column to that many
characters. With a larger
numeric argument, sets the fill
column to that many pixels.

2.3 Program Development: Design and Figure Outline

2.3.1 Program Strategy

Our goal in developing the sample program is to reproduce the
pattern of striped arrows on the cover of this document. The
pattern consists of one large arrow enclosing many small arrows
that are similar to each other. Each arrow is a series of line
segments that form either its outline or its stripes.

We have two general problems in writing the program. We must
calculate the position of each line segment we want to draw. We
must also convert these positions into a form that will produce line
segments on the output device we choose.

In solving these problems, we want to adhere to two principles:

« We want the program to be as modular as possible. The routines
that calculate line positions should not depend on the output device

14
Program Development Ulilities February 1985

we choose. The routines that translate positions for the output
device should not depend on any particular method of calculating
those positions. If we want to change the internal operation of
either set of routines, we should not have to change the other.

» We want to write the program in an incremental style. We write
the program in stages, producing a working version at each stage.
We start with simple tasks and gradually add refinements until we
are satisfied with what the program accomplishes.

We write the program in two modules, one to calculate line
positions and the other to translate positions for the output
streams. We put these modules in separate files. For the first file:
See the section "Calculation Module for the Sample Program", page
147. For the second file: See the section "Output Module for the
Sample Program", page 165.

How do we send line positions from the module that calculates
them to the module that transmits them to output? The output
module consists of definitions of flavors and methods to transfer
information to the appropriate output stream: See the section
"Using Flavors and Windows", page 111. Streams for LGP and
screen output can both produce lines using the coordinates of the
endpoints. Our module that calculates line positions needs to
compute the coordinates of the endpoints of the lines to be drawn.
In the output module, we define a generic operation called
:show-lines to receive the coordinates from the calculation module
and translate them for the appropriate output stream. The
calculation module sends :show-lines messages to the output
module. We can decide at run time which output stream to use.

Now that we have defined the interface between the two modules,
we could in principle write either module first. Although we want
the position-calculating routines to be independent of the output
device, we have to choose a coordinate system for the calculations.
For ease of interpretation, we place the origin at bottom left. This
is the convention that the system LGP routines use, but the origin
for screen coordinates is at top left. For the sake of convenience,
we calculate positions in units of LGP pixels.

2.3.2 Simple Screen Output
For a discussion of the output routines: See the section "Using
Flavors and Windows", page 111. Eventually, we want to produce
output on the screen, an LGP, or a file. To develop the program,
we need a routine for simple screen display so that we can check
the results of our calculation routines. We can use the stream that

15

February 1985

Program Development Tools and Techniques

is the value of terminal-io. This stream handles :draw-line
messages whose arguments include the coordinates of the endpoints
of the lines to be drawn. For more on :draw-line: See the
method (:method tv:graphics-mixin :draw-line) in Programming
the User Interface.

We first create a source file for the output routine. We define a
flavor, screen-arrow-output, and a method to handle :show-lines
messages from the calculation routines. The arguments to
:show-lines are the coordinates of the endpoints of one or more
lines to be drawn. If the message has more than four arguments
— the coordinates of two endpoints — we assume that we are to
draw more than one line, each starting at the endpoint of the last.
The :show-lines method must iterate over the arguments of the
message and send terminal-io a :draw-line message for each line
to be drawn.

We must remember to transform the y-coordinate to take account
of the screen’s origin at the top. We must also scale both
coordinates to take account of the LGP’s higher resolution: Screen
pixels are about 2.5 times as large as LGP pixels.

The following code provides this simple output module:

(defflavor screen-arrow-output
((scale-factor 2.5))
()

{defmethod (screen-arrow-output :show-lines)
(x y &rest x-y-pairs)

(loop for x0 = (send self ’:compute-x x) then x1
for y0 = (send self ’:compute-y y) then y1
for (x1 y1) on x-y-pairs by #’cddr
do (setq x1 (send self ’:compute-x x1)

y1 (send self ’:compute-y y1))
(send terminal-io ’:draw-line
x0 y0 x1 y1 tv:alu-ior t)))

(defmethod (screen-arrow-output :compute-x) (x)
(fixr (// x scale-factor)))

(defmethod (screen-arrow-output :compute-y) (y)
(fixr (- 800 (// y scale-factor))))

16

Program Development Ulilities February 1985

2.3.3 Outlining the Figure
We now begin to write the module that calculates the coordinates
of the lines that make up the figure. First we must decide how to
represent the large arrow that encloses the figure and the smaller
arrows inside it. Seven points define each arrow: See the section
"Calculation Module for the Sample Program", page 147.

Each arrow has a head, bounded by points 0, 1, and 6, and a shaft,
bounded by points 2, 3, 4, and 5. The large outer arrow and the
smaller inner arrows differ in their shafts. Each inner arrow has
two yet smaller arrows beneath it. The inferior arrows overlap the
shafts of the superior arrows and turn each shaft into a series of
descending triangles.

We have two kinds of arrow, represented by the large outer arrow
and the small inner ones. We can treat these differences in several
ways:

» We can define two structures, make each arrow an instance of one
of the structures, and store information about each arrow in the
structure’s slots. See the section "Structure Macros" in Reference
Guide to Symbolics-Lisp.

* We can define two flavors, make each arrow an instance of one of
the flavors, and store information about each arrow in the flavor’s
instance variables. See the section "Flavors" in Reference Guide to
Symbolics-Lisp.

» We can simply define global variables to represent the state of the
current arrow.

Whichever method we choose, some operations, such as striping the
arrowheads, will be the same for both kinds of arrows. Other
operations, such as striping the shafts, will depend on the kind of
arrow we are drawing.

For simplicity, we use global variables to hold information about the
arrows, and we use functions to define procedures for calculating
coordinates. Note that we bind the global variables rather than set
them. We do this because we might eventually have two or more
arrow programs running at the same time in separate processes. If
we set global variables, one program might incorrectly use a value
set by another. See the section "The Arrow Window: Interaction,
Processes, and the Mouse", page 129.

Our first task in writing the calculation module is to outline the
arrows. After creating a file for the module, we write the code for
this task in six steps:

17

February 1985

Program Development Tools and Techniques

1. Define variables to hold information about the arrow we are

drawing. For the :show-lines message we need the x- and y-
coordinates of the seven points that define the arrow. We also
need the length of the top edge of the arrow, which we use as a
base length. In calculating coordinates, we also need the values of
one-half and one-fourth the length of the top edge.

We use defvar to declare global variables near the beginning of the
file. This special form declares variables special for the compiler and
lets us supply default initial values and documentation strings. By
convention, we surround the names of global variables with
asterisks to distinguish them from names of local variables.

(defvar x*top-edgex nil
“Length of the top edge of the arrow")

(defvar xtop-edge-2x nil
"Half the length of the top edge®)

(defvar xtop-edge-4x nil
"One-fourth the length of the top edge")

(defvar xpOxx nil
"X-coordinate of point 0")

(defvar xpOyx nil
“Y-coordinate of point 0")

(defvar xpixx nil
"X-coordinate of point 1")

(defvar xplyx nil
"Y-coordinate of point 1%)

(defvar xp2xx nil
“X-coordinate of point 2")

(defvar xp2yx nil
"Y-coordinate of point 2")

(defvar xp3xx nil
"X-coordinate of point 3*)

(defvar *p3yx nil
“Y-coordinate of point 3")

(defvar *p4xx nil
"X-coordinate of point 4")

18

Program Development Ulilities February 1985

(defvar xpayx nil
"Y-coordinate of point 4")

(defvar xp5xx nil
¥X-coordinate of point 5")

(defvar xp5yx nil
"Y-coordinate of point 5")

(defvar *p6xx nil
“X-coordinate of point 6")

(defvar xp6yx nil
“Y-coordinate of point 6")

. Define an initial function, draw-arrow-graphic, for the calculation

module. We will call this function from the one we invoke to start
the program. We pass draw-arrow-graphic the length of the top
edge of the large arrow and the coordinates of its top right point
(point 0). These arguments determine the position and size of the
arrow. The function also calculates the half and quarter lengths of
the top edge.

(defun draw-arrow-graphic (xtop-edgex xpOxx *pQyx)
(let ((xtop-edge-2x (// xtop-edgex 2))
(xtop-edge-4x (// xtop-edgex 4)))))

. Outline the large arrow. We compute the coordinates of the other

six points of the arrow, then send a :show-lines message to draw
the lines. We can calculate the coordinates of points 1, 2, 5, and 6
the same way for both the large and small arrows. We put these
calculations in a separate function so that we can use the same
code for both kinds of arrow. We need a constant to hold the
destination of the :show-lines messages. We must add to
draw-arrow-graphic a call to draw-big-arrow.

(defconst xdestx nil
"Destination of :SHOW-LINES messages to output”)

(defun draw-arrow-graphic (xtop-edgex xpOxx *pOyx)
(let ((xtop-edge-2%x (// *top-edgex 2))
(xtop-edge-4x (// xtop-edgex 4)))
(draw-big-arrow)))

19

February 1985 Program Development Tools and Techniques

(defun draw-big-arrow ()
(multiple-value-bind
(xpixx xplyx *p2xx Xp2yXx Xp5xX xpSy* Xp6xx *pbyx)
(compute-arrowhead-points)
(multiple-value-bind (*p3xx *p3y* XpAx* *plyx)
(compute-arrow-shaft-points)
(draw-big-outline))))

(defun compute-arrowhead-points ()

(letx ((p1x (- xpOxx xtop-edgex))
(ply *pOyx)
(p2x (+ p1x xtop-edge-4x))
(p2y (- xpOyx xtop-edge-4x))
(p6x *p0xx)
(p6y (- *pOyx xtop-edgex))
(p5x (- xpOxx xtop-edge-4x))
(pSy (+ p6y xtop-edge-4x)))

(values pix ply p2x p2y p5x p5y p6x pby)))

| (defun compute-arrow-shaft-points ()
| (values (- *plixx xtop-edge-4x)

| (- xp2yx xtop-edge-2x)

| *pZxx

| (- xp2yx xtop-edgex)))

| (defun draw-big-outline ()

| (send xdestx ’:show-1lines

| xpOxx XpOy* *pIxx *ply* Xp2xx Xp2y* Xp3xx Xp3yx

| XpAxx xpl4yx xp5SxXx XpSyx ¥p6xx Xp6y* xpOxx *pOyx))

4. Outline the largest of the small arrowheads. We can generate all
the interior outlines in the figure by outlining only the heads of the
small arrows. We first draw the largest of these arrowheads by
analogy with our drawing the large arrow. We can use our
function compute-arrowhead-points to calculate the coordinates
of the vertexes. First we need to halve the value of *top-edge*
and bind new values for the coordinates of the top right point of
the arrow.

(defun draw-arrow-graphic (xtop-edgex xpOxx xpQyx)
(let ((xtop-edge-2%x (// xtop-edgex 2))
(xtop-edge-4x (// xtop-edgex 4)))
(draw-big-arrow)
| (let ((xtop-edgex xtop-edge-2%)
| (xp0xx (- *pOx* xtop-edge-2x))
| (xp0y* (- xpOyx xtop-edge-2x)))
| (do-arrows))))

20

Program Development Ulilities February 1985

(defun do-arrows ()
(let ((xtop-edge-2x (// xtop-edgex 2))
(xtop-edge-4x (// xtop-edgex 4)))

(draw-arrow)))

(defun draw-arrow ()
(multiple-value-bind
(XpIxx XplyXx Xp2x* *p2y* *p5x* *pSy* xp6x*x *pbyx)
(compute-arrowhead-points)
(draw-outline)))

(defun draw-outline ()
(send xdestx ’:show-lines xp2xx *p2yx *plxx xplyx
xp0xx xpO0yx *xp6xx Xp6y* *pSxx xpSyx))

. Outline the rest of the small arrows. Each small arrow has two

inferior arrows beneath it. We modify our function do-arrows by
adding two recursive function calls: one to draw the left-hand
inferior of each superior arrow, and one to draw the right-hand
inferior. We limit the levels of recursion by defining a constant,
max-depth, and incrementing the variable *depth* on each call
to do-arrows until *depth* equals *max-depth*.

(defvar xdepthx 0
“Level of recursion for the current arrow")

(defconst *max-depthx 7
“Number of levels of recursion®)

(defun draw-arrow-graphic (xtop-edgex xpOxx XpOyx)
(let ((*top-edge-2x (// xtop-edgex 2))
(*xtop-edge-4x (// *xtop-edgex 4)))
(draw-big-arrow)
(let ((xtop-edgex xtop-edge-2%)
(xpOxx (- xpOxx xtop-edge-2x))
(xpOyx (- xpOyx xtop-edge-2x))
(xdepthx 0))
(do-arrows))))

21

February 1985 Program Development Tools and Techniques

(defun do-arrows ()
| (when (< xdepthx xmax-depthx)
(let ((xtop-edge-2x (// xtop-edgex 2))
(xtop-edge-4x (// xtop-edgex 4)))
(draw-arrow)
(let ((xdepthx (1+ xdepthx))
(xtop-edgex xtop-edge-2x)
(xp0xx (+ xtop-edge-4x (- xpOxx xtop-edgex)))
(xp0yx (- xpOyx* xtop-edge-4x)))
(do-arrows))
(Tet ((xdepthx (1+ xdepthx))
(xtop-edgex xtop-edge-2x)
(xp0xx (- *pOxx xtop-edge-4x))
(xp0yx* (+ xtop-edge-4x (- *pOyx xtop-edgex))))
(do-arrows)))))

6. Define a function we can call to produce the graphic. This function
has to make an instance of screen-arrow-output, clear the screen,
.and call draw-arrow-graphic. The arguments to
draw-arrow-graphic determine the size and placement of the
figure. For now, we use estimates based on the dimensions, in
pixels, of an LGP page.

(defun do-arrow ()
(let ((xdestx (make-instance ’screen-arrow-output)))
(send terminal-io ’:clear-screen)
(draw-arrow-graphic 1280 1800 1800)))

We now have a simple working version of our program. We first
compile our code: See the section "Compiling Lisp Code", page 70.
We then use SELECT L to select a Lisp Listener. There we can
evaluate (graphics:do-arrow) to run the program. We can avoid
typing the package prefix by first using pkg-goto to make the
current package graphics:

(pkg-goto ’graphics)

When we run the program, we generate a screen image of the
arrow outlines. Figure 1 shows the output of the program at this
stage.

These six steps illustrate a pattern of incremental program
development:

22

Program Development Ulilities February 1985

INIL

\

I‘Li'sp Listener 1
/7167 18:31:46 ron LIRS 4

Figure 1. Program output with only the outlines of the arrows in
the figure.

23

February 1985 Program Development Tools and Techniques

« We make each function initially simple. We add new functions and
edit old ones as tasks become more complex or refined. Facilities
for keeping track of Lisp syntax and for editing code encourage this
incremental style. See the section "Keeping Track of Lisp Syntax",
page 23. See the section "Editing Code: Program Development
Tools and Techniques", page 56.

« We compile, test, and debug code in sections as we write it. Many
Symbolics programmers, for example, would test draw-arrow both
before and after adding the recursive function calls.

To support this incremental style, we must be able to check the
syntax of our code, edit it, and compile it in sections. See the
section "Keeping Track of Lisp Syntax", page 23. See the section
"Editing Code: Program Development Tools and Techniques", page
56. See the section "Compiling and Evaluating Lisp", page 69.

2.4 Keeping Track of Lisp Syntax

Zmacs allows you to move easily through Lisp code and format it in a readable style.
Commands for aligning code and features for checking for unbalanced parentheses
can help you detect simple syntax errors before compiling.

Zmacs facilities for moving through Lisp code are typically single-keystroke commands
with c-n- modifiers. For example, Forward Sexp (c-m-F) moves forward to the end
of a Lisp expression; End Of Definition (e-m-E) moves forward to the end of a top-
level definition. Most of these commands take arguments specifying the number of
Lisp expressions to be manipulated. In Atom Word Mode word-manipulating
commands operate on Lisp symbol names; when executed before a name with
hyphens, for example, Forward Word (m-F) places the cursor at the end of the name
rather than before the first hyphen. See the section "Major and Minor Modes:
Program Development Tools and Techniques", page 12.

For a list of common Zmacs commands for operating on Lisp expressions: See the
section "Editing Lisp Programs in Zmacs" in Text Editing and Processing.

241 Comments
You can document code in two ways. You can supply
documentation strings for functions, variables, and constants: See
the section "Finding Out About Existing Code", page 35. You can
also insert comments in the source code. You can retrieve
documentation strings with Zmacs commands and Lisp functions:
See the section "Finding Out About Existing Code", page 35. The
Lisp reader ignores source-code comments. Although you cannot
retrieve them in the same ways as documentation strings, they are
essential to maintaining programs and useful in testing and
debugging. See the section "Compiling and Evaluating Lisp", page
69. See the section "Debugging Lisp Programs", page 79.

24

Program Development Ultilities February 1985

Most source-code comments begin with one or more semicolons.
Symbolics programmers follow conventions for aligning comments
and determining the number of semicolons that begin them:

Top-level comments, starting at the left margin, begin with three
semicolons.

Long comments about code within Lisp expressions begin with two
semicolons and have the same indentation as the code to which
they refer.

Comments at the ends of lines of code start in a preset column and
begin with one semicolon.

#| begins a comment for the Lisp reader. The reader ignores
everything until the next |#, which closes the comment. #| and
|# can be on different lines, and #]...|# pairs can be nested.

Use of #]...|1# always works for the Lisp reader. The editor,
however, currently does not understand the reader’s interpretation
of #l...1#. Instead, the editor retains its knowledge of Lisp
expressions. Symbols can be named with vertical bars, so the editor
(not the reader) behaves as if #]...|# is the name of a symbol
surrounded by pound signs, instead of a comment.

Now consider #1]...]1#. The reader views this as a comment: the
comment prologue is #|, the comment body is |...|. and the
comment epilogue is [#. The editor, however, interprets this as a
pound sign (#), a symbol with a zero length print name (||), lisp
code (...), another symbol with a zero length print name (||), and a
stray pound sign (#). Therefore, inside a #11...11#, the editor
commands which operate on Lisp code, such as balancing
parentheses and indenting code, work correctly.

Example

Let’s add some comments to draw-arrow-graphic. We can write
a top-level comment without regard for line breaks and then use
Fill Long Comment (m-X) to fill it. We use e~; to insert a comment
on the current line. We use m-LINE to continue a long comment on
the next line.

25

February 1985

s we we

o oo
’ »
T
’ »

Program Development Tools and Techniques

This function controls the calculation of the coordinates of the
endpoints of the lines that make up the figure. The three arguments
are the length of the top edge and the coordinates of the top right
point of the large arrow. DRAW-ARROW-GRAPHIC calls DRAW-BIG-ARROW
to draw the large arrow and then calls DO-ARROWS to draw the smaller
ones.

(defun draw-arrow-graphic (*top-edgex xpOxx xpQOyx)
(let ((xtop-edge-2x (// xtop-edgex 2))

(xtop-edge-4x (// xtop-edgex 4)))
(draw-big-arrow) ;Draw large arrow
;s Length of the top-edge for the first small arrow is half the
;; length for the large arrow. Bind new coordinates for the top
;3 right point of the small arrow.
(let ((xtop-edgex xtop-edge-2x)
(xp0Oxx (- *p0xx xtop-edge-2x))
(xp0yx (- xpOyx xtop-edge-2x))
(xdepthx 0))
(do-arrows)))) ;Draw small arrows

Reference
Indent For Comment (e~; or m-;)Inserts or aligns a comment on

the current line, beginning in the
preset comment column.

Kill Comment (c-n-3) Removes a comment from the

current line.

Down Comment Line (m-N) Moves to the comment column on

the next line. Starts a comment
if none is there.

Up Comment Line (m-P) Moves to the comment column on

the previous line. Starts a
comment if none is there.

Indent New Comment Line (n~LINE)

When executed within a
comment, inserts a newline and
starts a comment on the next
line with the same indentation as
the previous line.

Fill Long Comment (n-X) When executed within a comment

that begins at the left margin,
fills the comment.

Set Comment Column (c-¥ ;) Sets the column in which

comments begin to be the column

26
Program Development Ulilities February 1985

that represents the current
cursor position. With an
argument, sets the comment
column to the position of the
previous comment and then
creates or aligns a comment on
the current line.

24.2 Aligning Code
Code that you write sequentially will remain properly aligned if you
consistently press LINE (instead of RETURN) to add new lines. When
you edit code, you might need to realign it. c-m-@ and c-m-\ are
useful for aligning definitions and other Lisp expressions.

Reference

Indent New Line (LINE) Adds a newline and indents as
appropriate for the current level
of Lisp structure.

Indent For Lisp (TAB or c-m-TAB) Aligns the current line. If the
line is blank, indents as
appropriate for the current level
of Lisp structure.

Indent Sexp (c-m-Q) Aligns the Lisp expression
following the cursor.

Indent Region (c-m-\) Aligns the current region.

2.4.3 Balancing Parentheses
When the cursor is to the right of a close parenthesis, Zmacs
flashes the corresponding open parenthesis. The flashing open
parentheses, along with proper indentation, can indicate whether or
not parentheses are balanced. Improperly aligned code (after you
use a e-n-0 command, for instance) is often a sign of unbalanced
parentheses.

To check for unbalanced parentheses in an entire buffer, use Find
Unbalanced Parentheses (n-X). Zmacs can check source files for
unbalanced parentheses when you save the files. If a file contains
unbalanced parentheses, Zmacs can notify you and ask whether or
not to save the file anyway. To put this feature into effect, place
the following code in an init file:

27

February 1985

Program Development Tools and Techniques

(login-forms
(setf zwei:xcheck-unbalanced-parentheses-when-savingx t))

Reference

Find Unbalanced Parentheses (m~X)
Searches the buffer for
unbalanced parentheses. Ignores
parentheses in comments and
strings.

2.5 Program Development: Drawing Stripes

So far the sample program outlines all the arrows in the figure. The next task is to
draw the diagonal stripes. To keep this stage as simple as possible, we ignore the
differences in spacing and thickness of lines in the figure. We draw each stripe from
upper left to lower right. We draw the stripes in five steps:

1. Determine the distance between stripes. We first define a

constant, *do-the-stripes*, that we bind to t when we want to
draw stripes and nil when we want only outlines. We define
another constant, *stripe-distance*, to contain the horizontal
distance between stripes. Let’s assume we want 64 stripes in the
large arrowhead. We divide the initial *top-edge* by 64 to obtain
*stripe-distance®.

(defconst xdo-the-stripesx t
“When t, permits striping of the figure")

(defconst xstripe-distancex nil
"Horizontal distance between stripes in the large arrow")

28

Program Development Utilities February 1985

(defun draw-arrow-graphic (xtop-edgex xpOxx xpQOyx)
(let ((xtop-edge-2x (// xtop-edgex 2))
(xtop-edge-4x (// xtop-edgex 4))
| ;; Compute horizontal distance between stripes in the
| ;; large arrow, assuming 64 stripes in the large
| ;; arrowhead.
| (xstripe-distancex (// xtop-edgex 64)))
(draw-big-arrow) ;Draw large arrow
;; Length of the top-edge for the first small arrow is half the
;; length for the large arrow. Bind new coordinates for the top
;; right point of the small arrow.
(let ((xtop-edgex xtop-edge-2x)
(xpOxx (- xpOx* xtop-edge-2x))
(xp0yx (- xpOyx xtop-edge-2x))
(xdepthx 0))
(do-arrows)))) ;Draw small arrows

2. Stripe the head of the large arrow. We define a function,
stripe-arrowhead, and call it from draw-big-arrow. The
function loops to calculate the coordinates of the endpoints of the
stripes, starting in the upper right corner and decrementing x and
y by *stripe-distance*.

(defun draw-big-arrow ()
;; Determine coordinates of arrowhead vertexes
(multiple-value-bind
(xpIxx xplyx Xp2xx Xp2yx *pS5x* *pSy* Xp6xx Xp6yx)
(compute-arrowhead-points)
;; Determine coordinates of shaft vertexes
(multiple-value-bind (*p3xx Xp3yx xp4xx xpAyx)
(compute-arrow-shaft-points)
(draw-big-outline) ;Outline arrow
| (when *do-the-stripesx
(stripe-arrowhead))))) ;Stripe head

29

February 1985

Program Development Tools and Techniques

Function to control striping the head of each arrow.
Determines coordinates of starting and ending points for each
;33 stripe. Calls DRAW-ARROWHEAD-LINES to draw each stripe.
(defun stripe-arrowhead ()

;3 Find x-coord of top of last stripe to be drawn

(loop with last-x = (- *pOxx xtop-edgex)
;; Find starting x-coord for each stripe, decrementing -
;; by distance between stripes. Stop at last x-coord.
for start-x from xpOxx by *stripe-distancex above last-x
;3 Find ending y-coord for each stripe, decrementing by
;; distance between stripes.
for end-y downfrom xpOyx by *stripe-distancex
;3 Draw a stripe
do (draw-arrowhead-lines start-x end-y)))

.
»
-
?
-

;;; Draws a stripe in an arrowhead. Arguments are the x-coord
;33 of the starting point and the y-coord of the ending point
;3; of a stripe.
(defun draw-arrowhead-lines (start-x end-y)

(send xdestx ’:show-lines start-x *pOyx xpOxx end-y))

. Stripe the exposed portions of the shaft of the large arrow. The

shaft consists of a series of descending triangles along the left and
right sides. We define a function, stripe-big-arrow-shaft, to
control the striping. We then define six functions, three to stripe
the left side and three to stripe the right. The first function for
each side iterates through the triangles that make up the shaft.
The second function stripes one triangle. The third function draws
one stripe.

(defun draw-big-arrow ()

;s Determine coordinates of arrowhead vertexes

(multiple-value-bind
(xp1xx xplyXx Xp2x* *p2y* *pSxx *pSy* *p6x* *xp6yx)

(compute-arrowhead-points)
;; Determine coordinates of shaft vertexes
(multiple-value-bind (*p3xx Xp3y*x *pixx Xp4yx)
(compute-arrow-shaft-points)

(draw-big-outline) ;0utline arrow
(when xdo-the-stripesx
(stripe-arrowhead) ;Stripe head

(stripe-big-arrow-shaft))))) ;Stripe shaft

30

Program Development Ulilities February 1985

; Function to control striping the shaft of the large arrow.

;3 Just calls STRIPE-BIG-ARROW-SHAFT-LEFT to stripe the left side
;; and STRIPE-BIG-ARROW-SHAFT-RIGHT to stripe the right side.
defun stripe-big-arrow-shaft ()

(stripe-big-arrow-shaft-left)

(stripe-big-arrow-shaft-right))

»
.
?
-
»

;33 Function to control striping left side of big arrow’s shaft.
;;; Iterates over the triangles that make up the shaft. Determines
;33 coordinates of the apex and bottom right point of each triangle.
;33 Calls DRAW-BIG-ARROW-SHAFT-STRIPES-LEFT to stripe each triangle.
(defun stripe-big-arrow-shaft-left ()
;; Set up a counter for depth. Don’t exceed maximum recursion
;3 level.
(loop for shaft-depth from 0 below *max-depthx
;3 Find current top edge and its fractions
for top-edge = xtop-edgex then (// top-edge 2)
for top-edge-2 = (// top-edge 2)
for top-edge-4 = (// top-edge 4)
;; Find coordinates of apex of triangle
for apex-x = *p2xx then (- apex-x top-edge-2)
for apex-y = xp2yx then (- apex-y top-edge-2)
;3 Find x-coord of bottom right vertex
for right-x = (+ apex-x top-edge-4)
;; Find y-coord of bottom edge of triangle
for bottom-y = (- apex-y top-edge-4)
;; Stripe each triangle
do (draw-big-arrow-shaft-stripes-left
top-edge-4 apex-x apex-y right-x bottom-y)))

-
»
-
»
-

31

February 1985

— e — — —— S —— — — —— — — — — S — — — — —

Program Development Tools and Techniques

;33 Stripes each triangle in left side of big arrow’s shaft.
:;; Arguments are one-fourth current top edge, x- and y-coords
;;; of apex of triangle, x- and y-coords of bottom right vertex.
;;; Determines coordinates of starting and ending points for
;;; each stripe. Calls DRAW-BIG-ARROW-SHAFT-LINES-LEFT to
;33 draw the lines that make up each stripe.
(defun draw-big-arrow-shaft-stripes-left
(top-edge-4 apex-x apex-y right-x bottom-y)
(loop with half-distance = (// *stripe-distancex 2)
;s Find x-coord of last stripe in triangle
with last-x = (- apex-x top-edge-4)
;3 Find x-coord of top of each stripe, decrementing
;; from the apex by HALF the horizontal distance
;; between stripes. Stop at last stripe.
for start-x from apex-x by half-distance above last-x
;; Find y-coord of top of stripe
for start-y downfrom apex-y by half-distance
;3 Find x-coord of endpoint of stripe
for end-x downfrom right-x by *xstripe-distancex
;; Draw a stripe
do (draw-big-arrow-shaft-lines-left
start-x start-y end-x bottom-y)))

;35 Draws a stripe on the left side of the big arrow’s shaft.
;33 Arguments are the coordinates of the starting and ending
;33 points of each stripe.
(defun draw-big-arrow-shaft-lines-left
(start-x start-y end-x end-y) .
(send xdestx ’:show-lines
start-x start-y end-x end-y))

32

Program Development Utilities February 1985

;; Function to control striping right side of big arrow’s shaft.
;; Iterates over the triangles that make up the shaft. Determines
;; coordinates of the top point of each triangle. Calls
;3; DRAW-BIG-ARROW-SHAFT-STRIPES-RIGHT to stripe each triangle.
(defun stripe-big-arrow-shaft-right ()
;s Set up a counter for depth. Don’t exceed maximum recursion
;3 level.
(loop for shaft-depth from 0 below *max-depthx

;3 Find new top edge and its fractions

for top-edge = xtop-edgex then (// top-edge 2)

for top-edge-2 = (// top-edge 2)

for top-edge-4 = (// top-edge §)

;3 Find coords of top point of triangle

for start-x = (+ xp2xx top-edge-4)

for top-y = (- *p2yx xtop-edge-4x)

then (- top-y top-edge-2 top-edge-4)

;; Stripe the triangle

do (draw-big-arrow-shaft-stripes-right

top-edge-2 top-edge-4 start-x top-y)))

;3 Stripes each triangle in right side of big arrow’s shaft.
;3; Arguments are one-half and one-fourth of current top edge, and
;3; coords of top point of the triangle. Determines coordinates of
;33 starting and ending points for each stripe. Calls
;33 DRAW-BIG-ARROW-SHAFT-LINES-RIGHT to draw a stripe.
(defun draw-big-arrow-shaft-stripes-right
{top-edge-2 top-edge-4 start-x top-y)
(loop with half-distance = (// xstripe-distancex 2)
;3 Find y-coord of last stripe in triangle
with last-y = (- top-y top-edge-2)
;; Find y-coord of starting point of stripe. Don’t go
+; past the end of the triangle.
for start-y from top-y by *stripe-distancex above last-y
;s Find coords of ending point of the stripe, decrementing
;3 by HALF the horizontal distance between stripes
for end-x downfrom (+ start-x top-edge-4) by half-distance
for end-y downfrom (- top-y top-edge-4) by half-distance
;; Draw a stripe
do (draw-big-arrow-shaft-lines-right
start-x start-y end-x end-y)))

;;; Draws a stripe on the right side of the big arrow’s shaft.
;:; Arguments are the coordinates of the starting and ending points
;33 of the stripe.
(defun draw-big-arrow-shaft-lines-right
(start-x start-y end-x end-y)
(send xdestx ’:show-1lines
start-x start-y end-x end-y))

33

February 1985 Program Development Tools and Techniques

4. Stripe the heads of the small arrows. We call stripe-arrowhead
from draw-arrow.

(defun draw-arrow ()
;3 Calculate coordinates of arrowhead vertexes
(multiple-value-bind
(xpIxx xply*x xp2x* Xp2y* xp5x* xp5Syx xp6xx *p6yx)
(compute-arrowhead-points)

(draw-outline) ;Outline arrowhead
| (when xdo-the-stripesx
] (stripe-arrowhead)))) ;Stripe head

5. Stripe the exposed shafts of the small arrows. Like the shaft of
the large arrow, these shafts are composed of a series of descending
triangles. We define three functions: stripe-arrow-shaft iterates
through the triangles that make up a shaft;
draw-arrow-shaft-stripes stripes one triangle; and
draw-arrow-shaft-lines draws one stripe. We call
stripe-arrow-shaft from draw-arrow.

(defun draw-arrow ()
;; Calculate coordinates of arrowhead vertexes
(multiple-value-bind
(xpIxx *plyx Xp2xx ¥p2y* xp5xx xpSyx *p6x*x Xxpb6yx)
(compute-arrowhead-points)

(draw-outline) ;0utline arrowhead
(when xdo-the-stripesx
(stripe-arrowhead) ;Stripe head

| (stripe-arrow-shaft)))) ;Stripe shaft

34

Program Development Ulilities February 1985

—— — — — — —

;33 Function to control striping the shaft of a small arrow.
;;; Iterates over the descending triangles that make up the shaft.
;3; Calculates the coordinates of the top left and bottom right
;3; vertexes of each triangle. Calls DRAW-ARROW-SHAFT-STRIPES to
;33 Stripe each triangle.
(defun stripe-arrow-shaft ()
;; Set up a counter for depth. Don’t exceed maximum
;; recursion level.
(lToop for shaft-depth from *depth* below *max-depthx
;; Calculate fractions of new top edge
for top-edge-2 = xtop-edge-2x then (// top-edge-2 2)
for top-edge-4 = (// top-edge-2 2)
;; Find coords of top left point of triangle
for left-x = xp2xx then (- left-x top-edge-4)
for top-y = xp2yx then (- top-y top-edge-2 top-edge-4)
;; Find coords of bottom right point of triangle
for right-x = (+ left-x top-edge-2)
for bottom-y = (- top-y top-edge-2)
;3 Stripe the triangle
do (draw-arrow-shaft-stripes
left-x top-y right-x bottom-y)))

;33 Stripes each triangle in the shaft of a small arrow.
+33 Arguments are coordinates of the top left and bottom
;;; right points of the triangle. Calculates the y-coord
;3; of the starting point and the x-coord of the ending point
;;; of each stripe. Calls DRAW-ARROW-SHAFT-LINES to draw the
;33 Sstripe.
(defun draw-arrow-shaft-stripes
(left-x top-y right-x bottom-y)
;; Find y-coord of starting point of stripe. Don’t go
;; below the bottom of the triangle.
(loop for start-y from top-y by *stripe-distancex above bottom-y
;s Find x-coord of ending point of the stripe
for end-x downfrom right-x by *stripe-distancex
;; Draw a stripe
do (draw-arrow-shaft-1lines
left-x start-y end-x bottom-y)))

;3; Draws a stripe in the shaft of a small arrow. Arguments are
;s the coordinates of the starting and ending points of the
333 Sstripe.
(defun draw-arrow-shaft-tines
(left-x start-y end-x bottom-y)
(send xdestx ’:show-1lines
left-x start-y end-x bottom-y))

35
February 1985 Program Development Tools and Techniques

Figure 2 shows the output of the program, with stripes of even spacing and
thickness.

This stage in program development differs from the beginning of the program in two
ways:

» As we add new functions, we need to refer to existing code for such
information as the order of arguments in argument lists and the
values of variables and constants. See the section "Finding Out
About Existing Code", page 35.

« We must start to change existing code, adding function calls and
new arguments. These changes require increasing use of facilities
for editing code. See the section "Editing Code: Program
Development Tools and Techniques", page 56.

2.6 Finding Out About Existing Code

When you write or edit programs, you often need to find characteristics of existing
code. If you write programs incrementally, you need to find existing definitions,
argument lists, and values. To maintain modularity, you must know how new code
should interact with previously written modules. If you want to incorporate parts of
the Lisp Machine system in your programs, you often have to refer to system source
code.

Zmacs and Zetalisp have many facilities for retrieving information about Lisp objects
and for displaying and editing source code. This section describes features especially
useful for writing and editing code. We discuss facilities for learning about Lisp
objects, symbols, variables, functions, and pathnames.

2.6.1 Objects
describe displays information about a Lisp object in a form that
depends on the object’s type. For example, for a special variable,
describe displays the value, package, and properties, including
documentation, pathname of the source file, and Zmacs buffer
sectioning node.

An interactive, window-oriented version of describe is the
Inspector. See the section "The Inspector: Program Development
Tools and Techniques", page 104.

describe does not display array elements. For that you can use
the Inspector or listarray.

Example

(describe ’xtop-edgex)

36

Program Development Utilities February 1985

lrm.
|

Lisp Listener 1

/7167 18:43:45 ron LIS) J

Figure 2. Program output with stripes of even spacing and density.

37

February 1985 Program Development Tools and Techniques

The value of XTOP-EDGEx is NIL
xTOP-EDGE* is in the GRAPHICS package.
*TOP-EDGEx has property DOCUMENTATION:
"Length of the top edge of the arrow”
TOP-EDGE has property SPECIAL:
#<UNIX-PATHNAME "VIXEN: //dess//doc//workstyles//pcodex.2">
#CUNIX-PATHNAME “VIXEN: //dess//doc//workstyles//pcodex.">,
an object of flavor FS:UNIX-PATHNAME,
has instance variable values:

FS:HOST: #CUNIX-CHAOS-HOST SCRC-VIXEN>
FS:DEVICE: :UNSPECIFIC

FS:DIRECTORY: (*dess® *doc* "workstyles*)
FS:NAME: *pcodex”

FS:TYPE: NIL

FS:VERSION: :UNSPECIFIC

SI:PROPERTY-LIST: (BASE 10 :MODE ...)

FS:STRING-FOR-PRINTING: *VIXEN: //dess//doc//workstyles//pcodex.2"
FS:STRING-FOR-HOST: *//dess//doc//workstyles//pcodex.2*
FS:STRING-FOR-EDITOR: NIL

FS:STRING-FOR-DIRED: NIL

FS:STRING-FOR-DIRECTORY: NIL

*TOP-EDGEx has property SOURCE-FILE-NAME:
((DEFVAR #<UNIX-PATHNAME
"VIXEN: //dess//doc//workstyles//pcodex.2">))
((DEFVAR #<UNIX-PATHNAME
“VIXEN: //dess//doc//workstyles//pcodex.2">)) is a list

XTOP-EDGE* has property ZWEI:ZMACS-BUFFERS:
((DEFVAR #<SECTION-NODE Variable *TOP-EDGEx 27316607>))
((DEFVAR #<SECTION-NODE Variable *xTOP-EDGEx 27316607>)) is a list

*TOP-EDGEX

Reference

(describe object) Displays information about object
in a form that depends on the
object’s type. For named
structures, displays the symbolic
names and contents of the
entries in the structure.

(listarray array) Returns a list whose elements are

the elements of array.

38

Program Development Uliltties February 1985

2.6.2 Symbols

Several Zmacs commands and Lisp functions find the name of a
symbol or retrieve information about it. Unless you specify a
package, most of these commands search the global package and
its inferiors. It now takes several minutes to search all these
packages; if you don’t know which one the symbol is in, you might
want to use functions like apropos and who-calls only as a last
resort. For more on the meanings and default values of arguments
to these functions: See the section "Program Development Help
Facilities".

Example

In defining the function stripe-big-arrow-shaft-left, we need to
use the constant *max-depth*, but we remember only that its
name contains "depth". We use either m—-ESCAPE (to evaluate a
form in the editor minibuffer) or SELECT L (to select a Lisp
Listener) and then evaluate:

(apropos "depth” ’graphics)

GRAPHICS:DEPTH

GRAPHICS: xMAX-DEPTHx - Bound
GRAPHICS : SHAFT-DEPTH

GRAPHICS:*DEPTHx - Bound

(*DEPTHx SHAFT-DEPTH *MAX-DEPTH% DEPTH)

Example

After compiling stripe-arrowhead we want to test the program as
written so far, but we forget which function calls
draw-arrow-graphic:

(who-calls ’draw-arrow-graphic ’graphics)

DO-ARROW calls DRAW-ARROW-GRAPHIC as a function.
(DO-ARROW)

You can also find the callers of a function with List Callers (m-x).
See the section "Functions: Program Development Tools and
Techniques", page 40.

Reference
(apropos string package inferiors superiors)
Displays the names of all symbols

39

February 1985

Program Development Tools and Techniques

Where Is Symbol (m-¥X)

(where-is string package)

whose names contain string.
Indicates whether or not the
symbol is bound. Displays
argument lists of functions.

Displays the names of packages
that contain the specified symbol.

Displays the names of packages
that contain a symbol whose
print name is string.

(who-calls symbol package inferiors superiors)

(what-files-call symbol package)

(plist symbol)

List Matching Symbols (m-X)

Displays information about uses
of symbol as function, variable, or
constant. Returns a list of the
names of callers of symbol.

Displays names of files that
contain uses of symbol as
function, variable, or constant.

Returns the list representing the
property list of symbol.

Displays the names of symbols for
which a predicate lambda-
expression returns something
other than nil. Prompts for a
predicate for the expression
(lambda (symbol) predicate).
By default, searches the current
package; with an argument of
c-U, searches all packages; with
an argument of e-U ¢-U, prompts
for the name of a package. Press
c~. to edit definitions of symbols
that satisfy the predicate.

2.6.3 Variables

Describe Variable At Point (c-sh-¥) is a useful command to display
information about a variable. It tells you whether or not the
variable is bound, whether it has been declared special, and the file,
if any, that contains the declaration. You can find the value of a
variable by evaluating it in a Lisp Listener. If you have added a
documentation string to the variable declaration, you can retrieve
the string with c-sh-v or with ¢-sh-D, m-sh-D, or documentation.
See the section "Functions: Program Development Tools and

Techniques", page 40.

40

Program Development Ulilities February 1985

Example ,
In writing stripe-arrow-shaft we want to find out whether or not
max-depth is bound. c-sh-V displays the following information:

*MAX-DEPTHx has a value and is declared special by file
VIXEN: /dess/doc/workstyles/pcodex.]
Number of levels of recursion

Reference

Describe Variable At Point (c-sh-V)
Indicates whether or not the
variable is declared special, is
bound, or is documented by
defvar or defconst.

2.6.4 Functions

Many Zmacs and Zetalisp facilities for finding out about functions
apply both to functions defined by defun and to objects defined by
other special forms and macros that begin with "def".

2.6.4.1 Definitions

Edit Definition (m-.) is a powerful command to find and edit
definitions of functions and other objects. It is particularly valuable
for finding source code, including system code, that is stored in a
file other than that associated with the current buffer. It finds
multiple definitions when, for example, a symbol is defined as a
function, a variable, and a flavor. It maintains a list of these
definitions in a support buffer, where you can use n-. to return to
the definitions even when you are finished editing.

For a description of how to use Edit Definition (m-.) to edit
definitions of flavor methods: See the section "Methods: Program
Development Tools and Techniques", page 142.

Example _

We have written stripe-arrowhead and want to call it from
draw-big-arrow. We use m~-. to position the cursor at the
definition of draw-big-arrow.

Reference
Edit Definition (m-.) Selects a buffer containing a
function definition, reading in the

41

February 1985 Program Development Tools and Techniques

source file if necessary. You can
specify a definition by typing the
name into the minibuffer or
clicking on a name already in the
buffer. Offers name completion
for definitions already in buffers.
With a numeric argument, selects
the next definition satisfying the
most recently specified name.

2.6.4.2 Names

Often you know only part of a function name and need to find the
complete name. Use Function Apropos (m-x).

Example

We want to call stripe-arrowhead from draw-arrow, but we
remember only that draw-arrow contains the string "arrow". We
use Function Apropos (m-X) to display the names of functions that
contain "arrow". We click left on the name draw-arrow to edit its
definition.

m-X Function Apropos arrow

Functions matching arrow:
DO-ARROW

DO-ARROWS

DRAW-ARROW

DRAW-ARROW-GRAPHIC
DRAW-ARROWHEAD-LINES
DRAW-BIG-ARROW
DRAW-BIG-ARROW-SHAFT-LINES-LEFT
DRAW-BIG-ARROW-SHAFT-LINES-RIGHT
DRAW-BIG-ARROW-SHAFT-STRIPES-LEFT
DRAW-BIG-ARROW-SHAFT-STRIPES-RIGHT
STRIPE-ARROWHEAD
STRIPE-BIG-ARROW-SHAFT
STRIPE-BIG-ARROW-SHAFT-LEFT
STRIPE-BIG-ARROW-SHAFT-RIGHT

Reference

Function Apropos (m—X) Displays the names of functions
that contain a string. Press c-.
or click left on names in the
display to edit the definitions of
the functions listed.

42

Program Development Ulilities February 1985

2.6.4.3 Documentation

Function definitions can include documentation strings. When you
need to know the purpose of the function, you can retrieve the
documentation with e-sh-D, m-sh-D, or documentation.

Example

We wrote a long source-code comment at the beginning of the
definition of draw-arrow-graphic. We could have made this
comment a documentation string:

(defun draw-arrow-graphic (xtop-edgex *pOxx *pOyx)
"Function controlling the calculation module.
Controls calculation of the coordinates of the endpoints of the lines
that make up the figure. The three arguments are the length of the top
edge and the coordinates of the top right point of the large arrow.
DRAW-ARROW-GRAPHIC calls DRAW-BIG-ARROW to draw the large arrow and then
calls DO-ARROWS to draw the smaller ones.”
(let ((*xtop-edge-2x (// xtop-edgex 2))
(xtop-edge-4x (// xtop-edgex 4))
;s Compute horizontal distance between stripes in the
;3 large arrow, assuming 64 stripes in the large
;s arrowhead.
(*stripe-distancex (// xtop-edgex 64)))
(draw-big-arrow) ;Draw large arrow
;: Length of the top-edge for the first small arrow is half the
;5 length for the large arrow. Bind new coordinates for the top
;; right point of the small arrow.
(let ((xtop-edgex xtop-edge-2%)
(xp0xx (- xpOxx xtop-edge-2x))
(xpO0yx (- xpOyx *xtop-edge-2x))
(xdepthx 0))
(do-arrows)))) ;Draw small arrows

Later, when defining do-arrow, we add a call to
draw-arrow-graphic. We want to be sure that this is the control
function for the calculation module. We position the cursor at the
name draw-arrow-graphic inside the definition of do-arrow and
use m-sh-D to display the documentation for draw-arrow-graphic:

DRAH-ARROW-GRAPHIC: (XTOP-EDGEx xP0Xx xPOYx)

Function controlling the calculation module.

Controls calculation of the coordinates of the endpoints of the lines
that make up the figure. The three arguments are the length of the top
edge and the coordinates of the top right point of the large arrow.
DRAH-ARROW-GRAPHIC calls DRAW-BIG-ARROW to draw the large arrow and then
calls DO-ARROWS to draw the smaller ones.

43

February 1985 Program Development Tools and Techniques

c-sh-D displays the summary documentation:

DRAW-ARROW-GRAPHIC: Function controlling the calculation module.

Reference
Show Documentation (m-sh-B) Displays the function’s
documentation.

Long Documentation (c-sh-D) Displays the function’s
documentation string.

(documentation function) Displays the function’s
documentation string.

2.6.4.4 Argument Lists

Quick Arglist (e-sh-R) and arglist retrieve the argument list for a
function. What these facilities display depends on the nature of the
function, whether or not it has been compiled, and what options
the function includes. For details: See the function arglist in
Reference Guide to Symbolics-Lisp. See the section "Program
Development Help Facilities".

Example

We are editing the definition of do-arrow to add a call to
draw-arrow-graphic. We want to see the argument list for
draw-arrow-graphic. We position the cursor at the name
draw-arrow-graphic in the definition of do-arrow and use
c—sh-A:

DRAW-ARROW-GRAPHIC: (*TOP-EDGEx xP0OXx *POYxX)

Reference

Quick Arglist (c-sh-A) Displays a representation of the
argument list of the current
function. With a numeric
argument, you can type the name
of the function into the
minibuffer or click on a function
name in the buffer.

(arglist function) Displays a representation of the
function’s argument list.

44

Program Development Ulilities February 1985

2.6.4.5 Callers

When you change a function definition, you sometimes need to
make complementary changes in the function’s callers. Four Zmacs
commands find the callers of a function. These commands, like
who-calls, now take several minutes to search all packages for
callers. (For the example program, we need to search only the
graphics package.) By default, these commands search the
current package. With an argument of c¢-U, they search all
packages. You can specify the packages to be searched by giving
the commands an argument of e-U e-U.

Example

We decide to change the order of the arguments to
draw-arrow-graphic. We want to be sure to change all the
callers of draw-arrow-graphic to call the function with arguments
in the correct order. We use Edit Callers (m-x).

Reference

List Callers (m-X) Lists functions that call the
specified function. Press c-. to
edit the definitions of the
functions listed.

Multiple List Callers (m—%) Lists functions that call the
specified functions. Continues
prompting for function names
until you press only RETURN.
Press c-. to edit the definitions
of the functions listed.

Edit Callers (m-X) Prepares for editing the
definitions of functions that call
the specified function. Press c-.
to edit subsequent definitions.

Multiple Edit Callers (m~¥X) Prepares for editing the
definitions of functions that call
the specified functions.
Continues prompting for function
names until you press only
RETURN. Press e-. to edit
subsequent definitions.

45

February 1985 Program Development Tools and Techniques

2.6.5 Pathnames
Zmacs provides several ways of finding the name of a file. If you
just need the name of a file and have some idea what directory it is
in, you can use c-X c-D with an argument of c-U or View Directory
(m-X) to display a directory. If you want to operate on files in a
directory, you can use c-¥ D with an argument of c-U or Dired
(m-X) to edit a directory. If you want to find a source file but don’t
know what directory it is in, you might remember the name of a
function defined in the file. In that case, you might be able to use
m-. to find the file.

Example

After editing the definitions in the calculation module, we want to
find the cutput module to edit the definiticn of do-arrow. We
forget the name of the file, but we remember the name of the
directory. We can use c-U c-X ¢-D to display the directory. If we
have interned do-arrow or read its file into a buffer, we can use
m—-. to find do-arrow directly.

Reference

Display Directory (e-X c-D) Displays the current buffer’s file’s
directory. With an argument of
c-U, prompts for a directory to
display.

View Directory (m-X) Lists a directory.

tr Dired (c-X D) Edits the current buffer’s file’s
directory. With an argument of
c-U, prompts for a directory to
edit. Displays the files in the
directory. You can use single-
character commands to operate
on the files.

Dired (m-X) Edits a directory. Displays the
files in the directory. You can
use single-character commands to
operate on the files.

2.7 Program Development: Refining Stripe Density and Spacing

At this stage of development, the program outlines the arrows in the figure and fills
them with stripes of uniform thickness and spacing. In the finished figure, stripe

thickness or density increases from upper right to lower left within each arrow, and
stripe spacing varies among the levels of the figure. We adjust the stripe spacing by

46

Program Development Utilities February 1985

replacing the constant distance between stripes by a variable. We correct the stripe
density by drawing multiple adjacent lines for each stripe.

We adjust the stripe spacing in three steps:

1. Define a variable, *stripe-d*, to represent the distance between
stripes for each arrow.

| (defvar *stripe-dx nil
| "Horizontal distance between stripes for each arrow")

2. Calculate the value of *stripe-d* for each arrow. For the large
arrow, this is just *stripe-distance*. For the small arrows, we
need to call a new function, compute-stripe-d, from draw-arrow.
compute-stripe-d calculates *stripe-d* as a fraction of
stripe-distance that depends on the level of recursion. It
ensures that *stripe-d* divides *top-edge*® evenly and that
stripe-d is never less than 3.

(defun draw-big-arrow ()
;; Determine coordinates of arrowhead vertexes
(multiple-value-bind
(xpIxx Xxplyx Xxp2x% Xp2y* *p5x* *p5y* Xp6xx *p6yx)
(compute-arrowhead-points)
;3 Determine coordinates of shaft vertexes
(multiple-value-bind (*p3x* *p3yx *plixx *plyx)
(compute-arrow-shaft-points)
(draw-big-outline) ;0utline arrow
(when xdo-the-stripesx
| ;; Bind distance between stripes
(Tet ((*stripe-dx xstripe-distancex))
(stripe-arrowhead) ;Stripe head
(stripe-big-arrow-shaft)))))) ;Stripe shaft

(defun draw-arrow ()
;; Calculate coordinates of arrowhead vertexes
(multiple-value-bind
(Xpl1xx *plyx Xp2xx Xp2y* *p5Sx* xpSyx *p6x*x *p6yx)
(compute-arrowhead-points)
(draw-outline) ;0utline arrowhead
(when xdo-the-stripesx
| ;3 Calculate distance between stripes |
] (let ((xstripe-dx (compute-stripe-d)))
(stripe-arrowhead) ;Stripe heag
(stripe-arrow-shaft))))) ;Stripe shaft

47

February 1985

Program Development Tools and Techniques

;3 Calculates horizontal distance between stripes.
;;; Distance is a fraction of the distance between stripes for the
;;; large arrow. The divisor depends on the level of recursion.
;3 Distance divides length of top edge evenly when possible to
;3;; maintain continuity between head and shaft of arrow.
(defun compute-stripe-d ()
;; Distance should be at least 3 pixels so that there is some
;; white space between lines.
(if (< xstripe-distancex 3)
3
;3 First find a fraction of *STRIPE-DISTANCEx that depends
;3 on recursion level
(Toop for dist = (fixr (// xstripe-distancex
(selectq *depthx
(0 2)
(1 4)
(2 2)
(3 1.5)
(4 1.5)
(otherwise 2))))
;; Increment if it doesn’t divide XTOP-EDGEx evenly
then (1+ dist)
when (= 0 (\ xtop-edgex dist))
;; Stop when no remainder. Don’t return a value
;; less than 3.
do (return (if (s dist 3) 3 dist)))))

3. Replace *stripe-distance* with *stripe-d* in the functions

stripe-arrowhead and draw-arrow-shaft-stripes.

(defun stripe-arrowhead ()

;3 Find x-coord of top of last stripe to be drawn

(loop with last-x = (- *pOx* xtop-edgex)
;; Find starting x-coord for each stripe, decrementing
;; by distance between stripes. Stop at last x-coord.
for start-x from *pOxx by *stripe-dx above last-x
;3 Find ending y-coord for each stripe, decrementing by
;; distance between stripes.
for end-y downfrom *pOyx by Xstripe-dx
;; Draw a stripe
do (draw-arrowhead-lines start-x end-y)))

48

Program Development Ulilities February 1985

(defun draw-arrow-shaft-stripes
(left-x top-y right-x bottom-y)
;3 Find y-coord of starting point of stripe. Don’t go
;3 below the bottom of the triangle.
| (loop for start-y from top-y by ¥stripe-dx above bottom-y
;3 Find x-coord of ending point of the stripe
| for end-x downfrom right-x by *stripe-dx
;; Draw a stripe
do (draw-arrow-shaft-lines
left-x start-y end-x bottom-y)))

We adjust the stripe density in three steps:

1. Define two new constants for each arrow, *d1* and *d2*. *di*
represents the stripe density, or the proportion of the distance
between stripes that is black, at the upper right of each arrow.
d2 represents the density at lower left for each arrow. We
estimate *d1* to be 0.15 and *d2* to be 0.75.

[(defconst xd1x 0.15
| “Proportion of distance between upper right stripes that is black")

] (defconst xd2x 0.75
| "Proportion of distance between lower left stripes that is black")

2. Define a function, compute-nlines, that returns the number of
adjacent lines that make up a stripe to be drawn. This function
calls another, compute-dens, to calculate the proportion of the
distance between stripes that is black. This proportion is a
function of the position of the stripe between the upper right and
lower left of the arrow. compute-nlines multiplies this proportion
by *stripe-d* to determine the number of lines that make up the
stripe. This number must be at least one and less than *stripe-d*
minus one.

The argument to compute-nlines represents the horizontal
position of the stripe to be drawn between the upper right and
lower left of the arrow. Imagine the top edge of each arrow
projected to the left beyond the arrowhead. Imagine each stripe
projected to the upper left until it intersects with the extended top
edge. The argument to compute-nlines is the x-coordinate of this
intersection. *pO0x* is the x-coordinate of this intersection for the
top right corner of each arrow, where the stripe density is *d1*.
x2 is the x-coordinate of this intersection for the lower left stripe
in each arrow, where the density is *d2*. The x-coordinate for
each stripe must be between *p0Ox* and *x2* and the density must
be between *d'* and *d2*.

49

February 1985 Program Development Tools and Techniques

| (defvar xx2% nil
| "X-coordinate of projection of lower left stripe on top edge”)

(defun draw-big-arrow ()
;; Determine coordinates of arrowhead vertexes
(multiple-value-bind
{(*pIxx Xxply* Xp2x* *p2y* Xp5xX xpSyx ¥p6x* *p6yx)
(compute-arrowhead-points)
;; Determine coordinates of shaft vertexes
(multiple-value-bind (¥p3xx *p3yx *pl4xx *plyx)
(compute-arrow-shaft-points)
(draw-big-outline) ;0utline arrow
(when *do-the-stripesx
;; Bind distance between stripes and x-coord of
;; projection of last stripe onto top edge
(let ((xstripe-dx xstripe-distancex)
| (xx2x (- *pOxx xtop-edgex *xtop-edgex)))
(stripe-arrowhead) ;Stripe head
(stripe-big-arrow-shaft))))})) ;Stripe shaft

(defun draw-arrow ()
;3 Calculate coordinates of arrowhead vertexes
(multiple-value-bind
(*plIxx Xxply*x Xp2x* *p2y* *p5xXx *pS5y* *Xp6x*x *pByx*)
(compute-arrowhead-points)
(draw-outline) ;0utline arrowhead
(when xdo-the-stripesx
;3 Calculate distance between stripes and x-coord of
;3 projection of last stripe onto top edge
(let ((*stripe-d* (compute-stripe-d))
| (xx2x (- xpOxx xtop-edgex xtop-edgex)))
{stripe-arrowhead) ;Stripe head
(stripe-arrow-shaft))))) ;Stripe shaft

;3; Calculates the number of lines that compose each stripe.
;33 Calls COMPUTE-DENS to calculate the proportion of distance
;;; between stripes to be filled, then multiplies by the actual
;;; distance between stripes. Makes sure that there is at least
;3; one line and that there aren’t too many lines to leave some
;;: white space.
(defun compute-nlines (x)
;3 Call COMPUTE-DENS and multiply result by *stripe-dx
(let ((n1 (fix (x xstripe-dx (compute-dens x)))))
;; Supply at least one line
(cond ({< n1 1) 1)
;3 But leave some white space between lines
((2 n1 (- xstripe-dx 1)) (- xstripe-dx 2))
(t nl))))

— e ——— ——— e —— —— — — — —— ——

50

Program Development Ulilities

29

February 1985

; Calculates proportion of distance filled in between each stripe.

; The argument is the x-coordinate of the projection of the current
; stripe onto the line formed by the top edge.
; projection of the current stripe is on this line in relation to the
; distance from first to last stripes in the arrow.
; fraction by the difference between densities of first and last
stripes. Finally, adds the density of the first stripe.

(defun compute-dens (x)
(+ xdi1x (% (- xd2x xdix)

(77 (- x xp0xx) (float (- *xx2x xp0xx))))))

. For each function that draws a stripe, replace the sending of one
:show-lines message by a loop that might send several. Determine

the number of messages each function should send by calling
compute-nlines.

(defun stripe-arrowhead ()
;; Find x-coord of top of last stripe to be drawn
(loop with last-x = (- xpOxx xtop-edgex)

;; Find starting x-coord for each stripe, decrementing
;; by distance between stripes. Stop at last x-coord.
for start-x from xpOx* by *stripe-dx above last-x

;; Find ending y-coord for each stripe, decrementing by
;; distance between stripes.

for end-y downfrom *pOyx by *stripe-dx

;; Find number of lines in the stripe

for nlines = (compute-nlines start-x)

;; Draw the lines that make up the stripe

do (draw-arrowhead-lines nlines start-x end-y last-x)))

(defun draw-arrowhead-lines (nlines start-x end-y last-x)
;3 Set up a counter
(loop for i from 0 below nlines

;; Find starting x-coord, subtracting counter from first
;3 X-coord
for first-x = (- start-x i)
;; Make sure we don’t go past the end of the arrowhead
while (< last-x first-x)
;; Draw a line
do (send xdestx ’:show-lines
first-x xpOyx xpOxx (- end-y i))))

Determines where the

Multiplies this

51

February 1985 Program Development Tools and Techniques

(defun stripe-big-arrow-shaft-left ()
;; Set up a counter for depth. Don’t exceed maximum recursion
;3 level.
(loop for shaft-depth from 0 below *max-depthx
;3 Find current top edge and its fractions
for top-edge = *top-edgex then (// top-edge 2)
for top-edge-2 = (// top-edge 2)
for top-edge-4 = (// top-edge 4)
;3 Find coordinates of apex of triangle
for apex-x = *p2xx then (- apex-x top-edge-2)
for apex-y = xp2yx then (- apex-y top-edge-2)
;3 Find x-coord of bottom right vertex
for right-x = (+ apex-x top-edge-4)
;3 Find y-coord of bottom edge of triangle
for bottom-y = (- apex-y top-edge-#4)
| ;3 Find the x-coord of the projection of the first
| ;; Sstripe onto top edge
| for xoff = (- *pOxx *top-edgex) then (- xoff top-edge)
;; Stripe each triangle
do (draw-big-arrow-shaft-stripes-left
] top-edge-4 apex-x apex-y right-x bottom-y xoff)))

(defun draw-big-arrow-shaft-stripes-left
| (top-edge-4 apex-x apex-y right-x bottom-y xoff)
(loop with half-distance = (// *stripe-distancex 2)
;3 Find x-coord of last stripe in triangle
with last-x = (- apex-x top-edge-4)
;3 Find x-coord of top of each stripe, decrementing
;; from the apex by HALF the horizontal distance
;; between stripes. Stop at last stripe.
for start-x from apex-x by half-distance above last-x
;; Find y-coord of top of stripe
for start-y downfrom apex-y by half-distance
;; Find x-coord of endpoint of stripe
for end-x downfrom right-x by xstripe-distancex
| ;3 Find number of lines in the stripe
| for nlines = (compute-nlines (- xoff (- right-x end-x)))
;; Draw a stripe
do (draw-big-arrow-shaft-lines-left
| nlines start-x start-y end-x bottom-y last-x)))

52
Program Development Utilities February 1985

(defun draw-big-arrow-shaft-lines-left
(nlines start-x start-y end-x end-y last-x)
;; Set up two counters -- we need to draw two lines at once
(loop for i from 0
for i2 from 0 by 2
;3 Find x-coord of top of first line in stripe
for first-x = (- start-x i)
;3 Don’t exceed number of lines in stripe
while (< i2 nlines)
;3 Don’t go past the end of the triangle
while (< last-x first-x)
;; Draw a line
do (send xdestx ’:show-lines first-x (- start-y i)
(- end-x i2) end-y)
;3 Draw a second line. The two lines are a refinement
;s to stagger the endpoints of the lines so the diagonal
;; edge looks neat.
(send *xdestx ’:show-lines first-x (- start-y i 1)
(- end-x i2 1) end-y)))

(defun stripe-big-arrow-shaft-right ()
;s Set up a counter for depth. Don’t exceed maximum recursion
;3 level.
(Toop for shaft-depth from 0 below *max-depthx
;3 Find new top edge and its fractions
for top-edge = xtop-edgex then (// top-edge 2)
for top-edge-2 = (// top-edge 2)
for top-edge-4 = (// top-edge 4)
;s Find coords of top point of triangle
for start-x = (+ *xp2xx top-edge-4)
for top-y = (- *p2y* xtop-edge-4x)
then (- top-y top-edge-2 top-edge-4)
| ;3 Find x-coord of projection of first stripe onto
| ;5 top-edge
| for xoff = (- *pOxx xtop-edgex) then (- xoff top-edge)
;3 Stripe the triangle
do (draw-big-arrow-shaft-stripes-right
| top-edge-2 top-edge-4 start-x top-y xoff)))

53

February 1985

Program Development Tools and Techniques

(defun draw-big-arrow-shaft-stripes-right

(top-edge-2 top-edge-4 start-x top-y xoff)

{1oop with half-distance = (// xstripe-distancex 2)

;3 Find y-coord of last stripe in triangle
with last-y = (- top-y top-edge-2)
;3 Find y-coord of starting point of stripe. Don’t go
;; past the end of the triangle.
for start-y from top-y by *stripe-distancex above last-y
;3 Find coords of ending point of the stripe, decrementing
;3 by HALF the horizontal distance between stripes
for end-x downfrom (+ start-x top-edge-4) by half-distance
for end-y downfrom (- top-y top-edge-4) by half-distance
;; Find number of lines that make up the stripe
for nlines = (compute-nlines (- xoff (- top-y start-y)))
;; Draw a stripe
do (draw-big-arrow-shaft-lines-right

nlines start-x start-y end-x end-y last-y)))

(defun draw-big-arrow-shaft-lines-right

(nlines start-x start-y end-x end-y last-y)

+; Set up two counters -- we need to draw two lines at once
(loop for i from O

for i2 from 0 by 2
;3 Find y-coord of ending point of line
for stop-y = (- end-y i)
;3 Don’t exceed number of lines in the stripe
while (< i2 nlines)
;; Don’t go past the bottom of the triangle
while (< last-y stop-y)
+; Draw a line
do (send *destx ’:show-lines start-x (- start-y i2)
(- end-x i) stop-y)

;3 Draw a second line. The two lines are a refinement
;+; to stagger the endpoints of the lines so the diagonal
;s edge looks neat.
(send *destx ’:show-lines start-x (- start-y i2 1)

(- end-x i 1) stop-y)))

54

Program Development Ultilities February 1985

(defun stripe-arrow-shaft ()
;; Set up a counter for depth. Don’t exceed maximum
;; recursion level.
(Toop for shaft-depth from *depthx below *max-depthx
;; Calculate fractions of new top edge
for top-edge-2 = xtop-edge-2* then (// top-edge-2 2)
for top-edge-4 = (// top-edge-2 2)
;3 Find coords of top left point of triangle
for left-x = xp2xx then (- left-x top-edge-4)
for top-y = *p2yx then (- top-y top-edge-2 top-edge-4)
+3 Find coords of bottom right point of triangle
for right-x = (+ left-x top-edge-2)
for bottom-y = (- top-y top-edge-2)
| ;3 Find x-coord of projection of first stripe onto top edge
| for xoff = (- *pOxx xtop-edgex)
| then (- xoff top-edge-2 top-edge-2)
;; Stripe the triangle
do (draw-arrow-shaft-stripes
] left-x top-y right-x bottom-y xoff)))

(defun draw-arrow-shaft-stripes
| (left-x top-y right-x bottom-y xoff)
;3 Find y-coord of starting point of stripe. Don’t go
;; below the bottom of the triangle.
(Toop for start-y from top-y by *xstripe-distancex above bottom-y
;; Find x-coord of ending point of the stripe
for end-x downfrom right-x by *stripe-dx
| ;3 Find number of lines in the stripe
| for nlines = (compute-nlines (- xoff (- right-x end-x)))
;; Draw a stripe
do (draw-arrow-shaft-lines
| nlines left-x start-y end-x bottom-y)))

| (defun draw-arrow-shaft-1lines

| (nlines left-x start-y end-x bottom-y)

| ;3 Set up a counter. Don’t exceed number of lines in the stripe.
| (Toop for i from 0 below nlines

| ;3 Find x-coord of ending point of the line

| for last-x = (- end-x i)

| ;; Don’t go past the left edge of the triangle

] while (< left-x last-x)

| ;; Draw a line

| do (send xdestx ’:show-lines left-x (- start-y i)
| last-x bottom-y)))

Figure 3 shows the output of thc program with stripes of varying spacing and
thickness.

56

Program Development Utilities February 1985

At this stage in developing the program we define new functions, constants, and
variables. But most of the work consists of changing existing code. Often you need
to make similar changes to several functions: you add an argument or replace
sending one message by a loop that sends several. In this case we are refining a
new program, but when maintaining existing code you must also make selective or
global changes. The most helpful facilities are those for finding out about existing
code and for editing code. See the section "Finding Out About Existing Code", page
35. See the section "Editing Code: Program Development Tools and Techniques”,

page 56.
2.8 Editing Code

Some features are useful mainly in composing new code. See the section "Getting
Started: Program Development Tools and Techniques", page 9. See the section
"Keeping Track of Lisp Syntax", page 23. Other features are helpful in both writing
and editing code. See the section "Finding Out About Existing Code", page 35. In
this section we discuss features that are likely to be most useful in editing existing
code.

2.8.1 Identifying Changed Code
Two pairs of List and Edit commands find or edit changed
definitions in buffers or files. By default, the commands find
changes made since the file was read; use numeric arguments to
find definitions that have changed since they were last compiled or
saved.

Example

After defining the routine that calculates the number of lines that
compose each stripe, we changed many functions to call that
routine and draw the appropriate number of lines. We want to
look over the changes before recompiling the edited definitions. We
use Edit Changed Definitions Of Buffer (n-X).

Reference

List Changed Definitions Of Buffer (m-X)
Lists definitions in the buffer
that have changed since the file
was read. Press c-. to edit the
definitions listed.

Edit Changed Definitions Of Buffer (n-X)
Prepares for editing definitions in
the buffer that have changed.
Press c-. to edit subsequent
definitions.

57

February 1985

Program Development Tools and Techniques

List Changed Definitions (m-X) Lists definitions in any buffer
that have changed since the files
were read. Press c-. to edit the
definitions listed.

Edit Changed Definitions (n-X) Prepares for editing definitions in
any buffer that have changed.
Press c-. to edit subsequent
definitions.

Print Modifications (n-X) Displays lines in the current
buffer that have changed since
the file was read.

Source Compare (n—%) Compares two buffers or files,
listing differences.

Source Compare Merge (m-%) Compares two buffers or files and
merges differences into a buffer.

2.8.2 Searching

and Replacing

Some facilities discussed elsewhere, particularly the series of List
and Edit commands, are useful for displaying and moving to code
you wish to edit. See the section "Finding Out About Existing
Code", page 35. The commands we discuss here find and replace
strings. Tag tables offer a convenient means of making global
changes to programs stored in more than one file. Use Select All
Buffers As Tag Table (m-X) to create a tag table for all buffers read
in. Use Select System As Tag Table (m-X) to create a tag table for
all files in a system. For information on systems: See the section
"Maintaining Large Programs", page 187.

Example

We have defined *stripe-d*, and we want to replace some
occurrences of the constant *stripe-distance* by the variable
stripe-d. We use Query Replace (n-2) to find each occurrence of
stripe-distance. By pressing SPACE, we replace
stripe-distance by *stripe-d* in functions like
stripe-arrowhead. By pressing RUBOUT, we leave
stripe-distance in place in functions like
draw-big-arrow-shaft-stripes-left.

Reference

List Matching Lines (n-X) Displays the lines (following point)
in the current buffer that contain
a string.

58

Program Development Ulilities

Incremental Search (c-S)

Reverse Search (c-R)

Tags Search (m-X)

Replace String (e-7)

Query Replace (n-2)

Tags Query Replace (n-X)

February 1985

Prompts for a string and moves
forward to its first occurrence in
the buffer. Press c-S to repeat
the search with the same string.
Press c-R to search backward
with the same string. After you
invoke the command, if c-$ is the
first character you type (instead
of a string), uses the string
specified in the previous search.

Prompts for a string and moves
backward to its last occurrence in
the buffer. Press ¢-R to repeat
the search with the same string.
Press c~5 to search forward with
the same string. After you
invoke the command, if c-R is the
first character you type (instead
of a string), uses the string
specified in the previous search.

Searches for a string in all files
listed in a tag table.

In the buffer, replaces all
occurrences (following point) of
one string by another.

In the buffer, replaces
occurrences (following point) of
one string by another, querying
before each replacement. Press
HELP for possible responses.

In files listed in a tag table,
replaces occurrences of one string
by another, querying before each
replacement.

Select All Buffers As Tag Table (m-X)

Creates a tag table for all buffers
in Zmacs.

Select System As Tag Table (m-%) Creates a tag table for files in a

system defined by defsystem.

59

February 1985

Program Development Tools and Techniques

2.8.3 Moving Text

2.8.3.1 - Moving Through Text

To move short distances through text, you can use the Zmacs
commands for moving by lines, sentences, paragraphs, Lisp forms,
and screens, or you can click left to move point to the mouse
cursor. To move longer distances, you can move to the beginning
or end of the buffer or use the scroll bar. To go to another buffer,
use Select Buffer (c-% B). To switch back and forth between two
buffers, use Select Previous Buffer (c-m-L).

Suppose you want to record a location of point so that you can
return to that location later. Two techniques are particularly
useful:

Store the location of point in a register. Use Save Position (c-¥ S)
to store point in a register. Use Jump to Saved Position (c-% J) to
return to that location.

Use m-SPACE to push the location of point onto the mark stack.
Later, you can use c-m-SPACE to exchange point and the top of the
mark stack. c-U c-SPRCE pops the mark stack; repeated execution
moves to previous marks. Note: Some Zmacs commands other
than c-SPARCE push point onto the mark stack. When point is
pushed onto the mark stack, the notification "Point pushed"
appears below the mode line.

Reference

Select Buffer (e-% B) Moves to another buffer, reading
the buffer name from the
minibuffer. With a numeric
argument, creates a new buffer.

Select Previous Buffer (e-m-L) Moves to the previously selected

buffer.

Save Position (e-X S) Stores the position of point in a
register. Prompts for a register
name.

Jump To Saved Position (e-x J) Moves point to a position stored
in a register. Prompts for a
register name.

Set Pop Mark (e-SPACE) With no argument, sets the mark
at point and pushes point onto
the mark stack. With an
argument of ¢-U, pops the mark
stack.

60

Program Development Ulilities February 1985

Push Pop Point Explicit (mv—SPACE) With no argument, pushes point
onto the mark stack without
setting the mark. With an
argument n, exchanges point
with the nth position on the
mark stack.

Move To Previous Point (c-m-SPACE)
Exchanges point and the top of
the mark stack.

Swap Point And Mark (e-X e-%) Exchanges point and mark.
Activates the region between
point and mark. Use Beep (c-G)
to turn off the region.

2.8.3.2 Killing and Yanking

When you need to repeat text, you usually want to copy it rather
than type it again. The most common facilities for copying text are
the commands for killing and yanking. Commands that kill more
than one character of text push the text onto the kill ring. c-¥
yanks the last kill into the buffer. After a e-Y command, m-Y
deletes the text just inserted, yanks the previous kill, and rotates
the kill ring.

Example

In the function draw-big-arrow-shaft-lines-left, we send two
:show-lines messages on each iteration. The purpose is to arrange
the starting points of the lines along the diagonal edge so that they
lie as closely as possible on a 45-degree line. The second send
expression is nearly identical to the first. Instead of typing a new
expression, we copy and edit the first one. We follow these steps:

1. Position the cursor after the close parenthesis that ends the first
send expression.

(defun draw-big-arrow-shaft-lines-left
(nlines start-x start-y end-x end-y last-x)

do (send xdestx ’:show-lines first-x (- start-y i)
(- end-x i2) end-y)

2. Use e-m-RUBOUT to Kkill the send expression and push it onto the
kill ring.

61

February 1985 Program Development Tools and Techniques

(defun draw-big-arrow-shaft-lines-left
(nlines start-x start-y end-x end-y last-x)

do
3. Use c-¥ to restore the expression.

(defun draw-big-arrow-shaft-lines-left
(nlines start-x start-y end-x end-y last-x)

do (send xdestx ’:show-lines first-x (- start-y i)
(- end-x i2) end-y)

4. Use LINE to move to the next line and indent.
5. Use c-Y to insert a copy of the send expression.

(defun draw-big-arrow-shaft-lines-left
(nlines start-x start-y end-x end-y last-x)

do (send xdestx ’:show-lines first-x (- start-y i)
(- end-x i2) end-y)

(send *destx ’:show-lines first-x (- start-y i)
(- end-x i2) end-y)

6. Edit the second send expression.

(defun draw-big-arrow-shaft-lines-left
(nlines start-x start-y end-x end-y last-x)

do (send xdestx ’:show-lines first-x (- start-y i)
(- end-x i2) end-y)

(send *xdestx ’:show-lines first-x (- start-y i 1)
(- end-x i2 1) end-y)))

Example

Suppose we have an existing program in which we have already
defined the function compute-nlines. We can copy the function in
three ways:

62

Program Development Ulilities

February 1985

« Use e-m—K or c-m-RUBOUT to kill the definition. Use e-Y to restore
it. Go to the new buffer. Use e-Y to insert a copy of the

definition.

e Use c-m-H to mark the definition. Use m~{ to push it onto the kill
ring. Go to the new buffer. Use e-Y to insert a copy of the

definition.

« Click middle on the first or last parenthesis of the definition to
mark the definition. Click sh-middle to push it onto the Kkill ring.
Move to the new buffer. Click sh-middle to insert a copy of the

definition.

Reference
Kill Sexp (e-m-K)

Backward Kill Sexp (c-m-RUBOUT)
Mark Definition (c-m-H)

Save Region (m-W)

Yank (c-¥)

Yank Pop (m-¥)

[Region (M2)]

Kills forward one or more Lisp
expressions.

Kills backward one or more Lisp
expressions.

Puts point and mark around the
current definition.

Pushes the text of the region
onto the Kkill ring without Killing
the text.

Pops the last killed text from the
kill ring, inserting the text into
the buffer at point. With an
argument n, yanks the nth entry
in the kill ring. Does not rotate
the Kkill ring.

After a c-Y command, deletes the
text just inserted, yanks
previously killed text from the kill
ring, and rotates the Kill ring.
Repeated execution yanks
previous kills and rotates the kill
ring.

When region is defined, pushes
the text of region onto the Kill
ring without Kkilling the text (like
m-W). Repeated execution has the
following effects:

First repetition: Kkills the text of
region, pushing the text onto the
kill ring (like e-W)

63

February 1985

2.8.3.3 Using Registers

Program Development Tools and Techniques

» Second repetition: pops the text
of region from the kill ring,
inserting the text into the buffer
at point (like c-v)

 Third and subsequent repetitions:
delete the text just inserted, yank
previously Kkilled text from the kill
ring, and rotate the kill ring (like
m=Y)

If no region is defined, pops the
last killed text from the kill ring,
inserting the text into the buffer
at point (like e~¥). Repeated
execution deletes the text just
inserted, yanks previously killed
text from the kill ring, and
rotates the kill ring (like m-v).

Using c-Y and m-Y to copy text can become tedious when you have
to rotate through a long kill ring to find the text you need.
Another method, especially useful when you want to copy a piece of
text more than once, is to save and restore the text using registers.

Reference
Put Register (c-X X)

Open Get Register (c-% G)

Copies contents of the region to a
register. Prompts for a register
name.

Inserts contents of a register into
the current buffer at point.
Prompts for a register name.

2.8.3.4 Copying Buffers and Files

Use Insert File (m-X) to place the contents of an entire file in your

buffer.

You can copy the contents of a buffer in two ways:

« Use Insert Buffer (m-%), naming the buffer you want to copy.

» Use c-X H to mark the buffer you want to copy. Use m-i to push
its text onto the kill ring. Move to the new buffer. Use c-¥ to

insert a copy of the text.

64

Program Development Ulilities

February 1985

Reference
Mark Whole (c-¥ H)

Insert Buffer (m-¥)

Insert File (m-%)

Marks an entire buffer.

Inserts contents of the specified
buffer into the current buffer at
point.

Inserts contents of the specified
file into the current buffer at
point.

2.8.4 Keyboard Macros

Sometimes you need to perform a uniform sequence of commands
on several pieces of text. You can save keystrokes by converting
the sequence to a keyboard macro and installing it on a single key.
If you anticipate using a macro often, you can write Lisp code to
define it in an init file. If you frequently use particular extended
commands, install them on single keys with Set Key (m~X).

Reference
Start Kbd Macro (e-% ¢)

End Kbd Macro (c-%))

Call Last Kbd Macro (c-X E)
Name Last Kbd Macro (mn-%)

Install Macro (m-X)

Install Mouse Macro (m—X)

Deinstall Macro (m-X)

Set Key (m—-X)

Begins recording keystrokes as a
keyboard macro.

Stops recording keystrokes as a
keyboard macro.

Executes the last keyboard macro.

Gives the last keyboard macro a
name.

Installs on a key the last
keyboard macro or a named
macro.

Installs a keyboard macro on a
mouse click (such as L2). When
you click to call the macro, point
moves to the position of the
mouse cursor before the macro is
executed.

Deinstalls a keyboard macro from
a key or a mouse click.

Installs an extended command on
a single key. Use HELP C to look
for unassigned keys.

65

February 1985 Program Development Tools and Techniques

2.8.5 Using Multiple Windows
2.8.5.1 Multiple Buffers

Sometimes when editing you move often between two buffers. You
might want to see the two buffers at the same time rather than
switch between them. A common use of multiple-window display is
to edit source code while viewing compiler warnings. See the
section "The Compiler Warnings Database: Program Development
Tools and Techniques", page 79.

Example

We add a new :show-lines message to the program but forget
what arguments the message takes. We want to display the source
code for the message handler on the same screen as our program
code. We use c-X 2 to create another window and move to it. We
use Edit Methods (m-X) to find the source code for the method that
handles :show-lines. See the section "Methods: Program
Development Tools and Techniques", page 142.

Example

After finishing the program, we collect a file of bug reports from
users. We want to use these reports in correcting our program
code. We create two windows, one displaying the program code and
the other the bug-report file. We edit the program code, using
c-m-V to scroll the bug-report window as we correct each bug.

Reference

Split Screen (m-x) Pops up a menu of buffers and
splits the screen to display the
buffers you select.

Two Windows (c-% 2) Creates a second window, with
the current buffer on top and the
previous buffer on the bottom.
Puts the cursor in the bottom
window.

View Two Windows (c-X 3) Creates a second window, with
the current buffer on top and the
previous buffer on the bottom.
Puts the cursor in the top
window.

Modified Two Windows (c-X 4) Creates a second window and
visits a buffer, file, or tag there.
Displays the current buffer in the
top window.

66

Program Development Utilities February 1985
Other Window (c-%X 0) Moves to the other of two
windows.
Scroll Other Window (c-n-V) Scrolls the other of two windows.
One Window (c-X 1) Returns to one-window display,
selecting the buffer the cursor is
in.

2.8.5.2 Zmacs and Other Windows

Use [Split Screen] or [Edit Screen] from the System menu to
display an editor window on the screen with other kinds of
windows.

Example

In testing new program functions, we want to have the current
version of the figure on the same screen as the program code. We
use [Split Screen] from the System menu to add a Lisp Listener to
the screen. We move between windows by clicking left on the
window to which we want to move.

We evaluate (pkg-goto ’graphics) and then (do-arrow) in the Lisp
Listener. We adjust the arguments to draw-arrow-graphic so
that the arrow fits neatly into the Lisp Listener window.

(defun do-arrow ()
(let ((xdestx (make-instance ’screen-arrow-output)))
(send terminal-io ’:clear-screen)
(draw-arrow-graphic 640 1300 1850)))

Figure 4 shows the appearance of the screen with graphic output in
a Lisp Listener and source code in a Zmacs buffer.

To return to displaying only the Zmacs window, we use [Split
Screen] with the existing Zmacs buffer as the only element.

Reference .

[Split Screen / Lisp / Existing Window / Existing Zmacs Buffer / Do
It] (from the System menu)
Adds a Lisp Listener to a screen
displaying an existing Zmacs
buffer.

[Split Sereen / Existing Window / Existing Zmacs Buffer / Do It]
(from the System menu)
Resumes one-window display of
an existing Zmacs buffer.

67

February 1985 Program Development Tools and Techniques

NIL

Lisp Listener 2
;33 Calculates the number of lines that compose each stripe.
333 Calls COMPUTE-DENS to calculate the proporticn of distance
;3; betueen stripes to be filled, then multiplies by the actual
;3; distance betueen stripes. Makes sure that there is at least
333 one line and that there aren’t too many lines to leave sone
;33 white space.
(defun compute-nlines (x)
;; Call COMPUTE-DENS and multiply result by *STRIPE-Ds
(let ((n) (fix (3 tstripe-d* (compute-dens x)))))
:s Supply at least one line
(cond ({(< n1 1) 1)
;; But leave some uhite space between lines
({2 nl (- sstripe-ds 1)) (- zstripe-ds 2))
(t n1))))

;i3 Calculates proportion of distance filled in between each stripe.
333 The argument is the x-coordinate of the projection of the current
;33 stripe onto the line formed by the top edge. Deternines where the
:33 projection of the current stripe is on this Tine in relation to the
;3 distance from first to last stripes in the arrou. Multiplies this
i3s3 fraction by the difference between densities of first and last
333 stripes. Finally, adds the density of the first stripe.
(defun compute-dens (x) f
(+ xdls (3 (- xd2zx xdlx)
(77 (- x 3pBxs) (float (- $x2% #pBxx))))))

ZMACS (LISP) pcodex.l /dess/doc/workstyles/ VIXEN: & [More above and belowl]

L:Hove point, L2:Nove to point, H:Hark thin?, H2:S5avesKil1/Yank, R:Menu, R2:System menu.
88s17,83 18:86:25 ron GRAPHICS: Tyi____

Figure 4. Using multiple windows to test the program while viewing the source
code.

68

Program Development Ulilities February 1985

2.8.5.3 Other Displays

The window system allows you to use menus, choose-variable-values
windows, and other multiple-window displays in executing programs.
For details: See the section "Using the Window System" in
Programming the User Interface. See the section "Window System
Choice Facilities" in Programming the User Interface. For examples
of simple uses of windows, including choose-variable-values windows:
See the section "Using Flavors and Windows", page 111.

69

February 1985 Program Development Tools and Techniques

3. Compiling and Evaluating Lisp

When should you compile code, and when evaluate it?

The main job of the compiler is to convert interpreted functions into compiled
functions. An interpreted function is a list whose first element is lambda,
named-lambda, subst, or named-subst. These functions are executed by the Lisp
evaluator. The most common interpreted functions you define are named-lambdas.
When you load a source file that contains defun forms or when you otherwise
evaluate these forms, you create named-lambda functions and define the function
specs named in the forms to be those functions.

Compiled functions are Lisp objects that contain programs in the Lisp Machine
instruction set (the machine language). They are executed directly by the microcode.
Compiling an interpreted function (by calling the compiler on a function spec)
converts it into a compiled function and changes the definition of the function spec
to be that compiled function.

You seldom compile functions directly. Instead, you compile either regions of Zmacs
buffers or source files.

« Compiling a region of a Zmacs buffer (or the whole buffer) causes
the compiler to process the forms in the region, one by one. This
processing has side effects on the Lisp environment. For a
summary of the compiler’s actions: See the section "Compiling
Code in a Zmacs Buffer", page 70.

» Compiling a source file translates it into a binary file. With some
exceptions, this processing does not have side effects on the Lisp
environment at compile time. When you load a compiled file that
defines functions, you create compiled rather than interpreted
functions and define function specs to be those compiled functions.
In other respects, loading a compiled file has essentially the same
effects as loading a source file (evaluating the forms in the file).
For a discussion of compiling files: See the section "Compiling and
Loading a File", page 73.

Most Symbolics programmers compile all their program code. The compiler checks
extensively for errors and issues warnings that help detect bugs like typographical
errors, unbound symbols, and faulty Lisp syntax. Compiled code runs faster and

takes up less storage than interpreted code. You can compile code in portions and
decide at compile time whether or not to save the compiler output in a binary file.

The most common use for interpreted functions is stepping through their execution.
You cannot step through the execution of a compiled function. If a function is
compiled, you can read its definition into a Zmacs buffer, evaluate the definition, and
then step through a function call.

In addition to evaluating definitions to create interpreted functions, you might need
to evaluate forms to test a program or find information about a Lisp object. (Unless
you are using the Stepper, functions that you call during these evaluations are

70

Program Development Ulilities February 1985

usually compiled.) You can evaluate a form in a Lisp Listener, a breakpoint loop, or
the minibuffer.

For more information on functions: See the section "Functions” in Reference Guide
to Symbolics-Lisp.

3.1 Compiling Lisp Code

You can use Zmacs commands to compile code in a file or Zmacs buffer. Most
Symbolics programmers compile code as soon as they have written enough to test.
This practice lets them correct errors quickly and produce simple working versions of
programs before adding more complex operations. A common command for
incremental compiling from a Zmacs buffer is Compile Region (e-sh-C). If no region
is defined, this command compiles the current definition.

In addition to compiling definitions as they write them, Symbolics programmers
consider it good practice to recompile a function soon after effecting a change.
Because recompiling a series of functions or an entire program can be time-
consuming, it is easier and faster to make changes and then use a single command
to recompile only the changed functions. Using Compile Changed Definitions Of
Buffer (m-sh-C) or Compile Changed Definitions (m-X) is easier in this case than
recompiling each function separately or recompiling the entire buffer.

The order in which you compile definitions can be important. For example, suppose
you have a function that binds a variable you want to be treated as special. If you
compile the function definition before compiling the variable declaration, the compiler
treats the variable as local and generates incorrect output. For this reason you
should usually put defvar and defconst forms at the beginning of a file or into a
separate file to be compiled and loaded before function definitions.

When editing a program, it is a good idea to load the entire program before you
start work on it. When you compile new definitions or recompile edited ones, the
compiler will have access to variable declarations, macros, functions, and other
information. You will also be able to use Zmacs commands and Lisp functions for
finding information about other parts of the program. See the section "Finding Out
About Existing Code", page 35.

Sometimes when you compile a file, write large sections of code at once, or make
many changes to a large program, compiling the code produces many warning
messages. For a description of how Edit Compiler Warnings (m-X) lets you use the
compiler warnings as a reference source for debugging: See the section "Debugging
Lisp Programs", page 79.

For more information on the compiler: See the section "The Compiler", page 305.

3.1.1 Compiling Code in a Zmacs Buffer
Compiling a top-level form in a Zmacs buffer — using a command
like Compile Region (c-sh-C) or Compile Buffer (n-%x) — has side

71

February 1985

Program Development Tools and Techniques

effects on the Lisp environment. Following is a summary of the
compiler’s actions:

Form Action

Macro form If the form is a list whose first
element is a macro, the compiler
expands the form and processes this
expanded form instead of the original.

Function definition If the form is a list whose first
element is defun, the compiler
constructs a lambda-expression from
the definition, converts the lambda-
expression into a compiled function,
and defines the function spec named in
the definition to be that compiled
function.

Macro definition If the form is a list whose first
element is macro, the compiler
constructs a lambda-expression as the
macro’s expander function, converts
the lambda-expression into a compiled
function, and defines the function spec
named in the definition to be the
macro. A defmacro form expands
into this kind of form.

Special case Some forms, like eval-when, declare,
and progn ’compile forms, have
special meaning for the compiler. It
handles each of these in a different
way. For details: See the section
"How the Stream Compiler Handles
Top-level Forms".

Atom, comment form The form is ignored.
Other The form is evaluated.
Example

We have written some initial code for the controlling function of
the calculation module:

(defvar xtop-edgex nil
"Length of the top edge of the arrow")

72

Program Development Ulilities February 1985

(defvar *pOxx nil
“X-coordinate of point 0")

(defvar xpOyx nil
"Y-coordinate of point 0")

(defun draw-arrow-graphic (xtop-edgex xp0Ox *pOyx)
(let ((xtop-edge-2x (// xtop-edgex 2))
(xtop-edge-4x (// xtop-edgex 4)))
(draw-big-arrow)))

Because we have no other code in the buffer, we can compile these
definitions using Compile Buffer (n-%). If we had more code in the
buffer, we could compile these definitions by setting the mark at

one end and point at the other and using Compile Region (c-sh-C).

The compiler displays the following warnings:

For Function DRAW-ARROW-GRAPHIC
The variable xTOP-EDGE-4x was never used.
The variable *xTOP-EDGE-2x was never used.
The variable xP0OX was never used.

The following functions were referenced but don’t seem defined:
DRAW-BIG-ARROW referenced by DRAW-ARROW-GRAPHIC

The first set of warnings indicates that the compiler is treating
top-edge-2, *top-edge-4*, and *p0x as local variables. We
neglected to declare *top-edge-2* and *top-edge-4* special with
defvar; *p0x is of course a misspelling. The lack of a definition
for draw-big-arrow is not surprising; we have yet to write that
definition.

We add the two defvars and correct the spelling of *p0Ox*. We
compile the changes using Compile Changed Definitions Of Buffer
(m-sh—-C). The compiler now displays only one warning:

The following functions were referenced but don’t seem defined:
DRAW-BIG-ARROW referenced by DRAW-ARROW-GRAPHIC

We continue writing the program by defining draw-big-arrow.

Reference
Compile Region (c-sh-C) Compiles the region. If no region

73

February 1985 Program Development Tools and Techniques

is marked, compiles the current
definition.

[Zmacs Window / Compile Region]Compiles the region. If no region
is marked, compiles the current
definition.

Compile Changed Definitions Of Buffer (m-sh-C)
Compiles all the definitions in the
current Zmacs buffer that have
changed since the definitions
were last compiled.

Compile Changed Definitions (m-X)
Compiles all the definitions in any
Zmacs buffer that have changed
since the definitions were last
compiled.

Compile Buffer (m-X) Compiles the current Zmacs
buffer.

Compile (m—X) [Zmacs Window (R)]
Pops up a menu of options for
compiling code in the current
context.

3.1.2 Compiling and Loading a File
Compiling a file, using Compile File (m-X) or compiler:compile-file,
saves the compiler output in a binary file of canonical type :bin.
For the most part, compiling a file does not have side effects on the
Lisp environment. The basic difference between compiling a source
file and compiling the same forms in a buffer is this: When you
compile a file, most function specs are not defined and most forms
(except those within eval-when (compile) forms) are not evaluated
at compile time. Instead, the compiler puts instructions into the
binary file that cause these things to happen at load time. You can
load a source or binary file into the Lisp environment by using
Load File (m-X) or load. You can compile a file and then load the
resulting binary file by using compiler:compile-file-load.

Example

In a previous session, we wrote the output routines for the
program, saved them in a file, and compiled that file. Now we are
writing the first calculation routines, and we want to test them.
We need to load the file that contains the compiled code for the
output routines. We use Load File (m-X).

74

Program Development Utilities

February 1985

Suppose our two files are in the directory >Symbolics>examples> on
Lisp Machine acme-blue. The file containing the output routines is
arrow-out. The current Zmacs buffer, and the file containing the
calculation module, is arrow-calc. When we type m-X load file (or
m-X lo f, using completion), Zmacs prompts for a file name:

Load File: (Default is ACME-BLUE:>Symbolics>examples>arrow-calc)

We type arrow-out, without a file type. The latest version of
arrow-out.nin is loaded. If no compiled version exists or if the
latest compiled file is older than the latest source file, Zmacs offers
to compile the source file and then load the compiled version.

Reference
Compile File (m-X)

Prompts for the name of a file
and compiles that file, placing the
compiled code in a file of
canonical type :bin.

(compiler:compile-file file-name)

Load File (n-X)

(load file-name)

Compiles a file, placing the
compiled code in a file of
canonical type :bin.

Prompts for a file name, taking
the default from the current
buffer. Offers to save the buffer
if it has changed since the file
was last read or saved. Offers to
compile the source file if no
compiled version exists or if the
source file was created after the
latest compiled version. If you
specify a file type, loads the latest
version of the file of that type. If
you don’t specify a file type, loads
the latest version of the binary
file (even if older than the latest
source file); if no binary file
exists, loads. the latest source file.

Loads a file into the Lisp
environment. If you specify a file
type, loads the latest version of
the file of that type. If you don’t
specify a file type, loads the latest

75

February 1985

Program Development Tools and Techniques

version of the binary file (even if
older than the latest source file);
if no binary file exists, loads the
latest source file.

(compiler:compile-file-load file-name)
Compiles a file, placing the
compiled code in a file of
canonical type :bin. Loads the
resulting binary file.

3.2 Evaluating Lisp Code

3.2.1 Evaluation

and the Editor

The most common reason for evaluating definitions in a Zmacs
buffer is to step through the execution of the functions they define.
Sometimes in debugging you want to proceed step by step through
a function call, using step or the :step option for trace. See the
section "Tracing and Stepping: Program Development Tools and
Techniques", page 92. You can do this only with interpreted
functions. If a function is compiled, you can use Edit Definition
(m-.) to read its definition into a Zmacs buffer. You can then
evaluate the definition using Evaluate Region (c-sh-E). When you
have finished stepping, you can recompile the definition.

The evaluation of Lisp forms in the editing buffer or the minibuffer
normally displays the returned values in the echo area (beneath the
mode line near the bottom of the screen). Any output to
standard-output during the evaluation appears in the editor
typeout window. Two commands, Evaluate Into Buffer (n-%) and
Evaluate And Replace Into Buffer (m-%), print the returned values
in the Zmacs buffer at point. With a numeric argument, these
commands also insert any typeout from the evaluation into the
Zmacs buffer.

Often while editing you need to evaluate forms other than

. definitions in a buffer. You need to call a function to test your

program, or you need to call a function like describe to find
information about a Lisp object. (Of course, these functions need
not be interpreted.) You can type forms to be evaluated in three
ways:

Use m—ESCAPE to evaluate a form in the minibuffer.

Use SUSPEND to enter a Lisp breakpoint loop. You type forms that
are read in the buffer’s package and evaluated. Use RESUME to
return to the editor.

76

Program Development Utilities February 1985

Use SELECT L or [Lisp] from the System menu to select a Lisp
Listener and evaluate forms there. Use SELECT E or [Edit] from
the System menu to return to the editor.

Example

We have found a bug in the program and suspect that it lies in the
function do-arrows. We want to step through a call to that
function, but it is compiled. We use Edit Definition (n-.) to find
the definition of do-arrows and Evaluate Region (c-sh-E) to
evaluate the definition. We then step through a function call. See
the section "Stepping: Program Development Tools and
Techniques", page 94.

Example

We have written and compiled the output routines and the initial
code for the calculation module. We want to test the program as
written so far. The top-level function to call is do-arrow. We can
test the program in three ways:

Press m-ESCAPE and evaluate (do-arrow). The graphic output
appears in a typeout window. We press SPACE to restore the
editing buffer to the screen.

Press SUSPEND to enter a Lisp breakpoint loop and evaluate
(do-arrow; there. We press RESUME to return to the editor.

Press SELECT L to select a Lisp Listener. If the current package is
not graphics, we first evaluate (pkg-goto ’graphics) and then
(do-arrow). We press SELECT E to return to the editor.

Example

We want to be sure that new function names do not conflict with
other symbol names in the graphics package. Most of our
function names contain the string "arrow". We want to find the
symbol names that contain that string. We use m-ESCAPE, SUSPEMND,
or SELECT L and evaluate:

(apropos "arrow" ’graphics)

Reference

Evaluate Region (c-sh-E) Evaluates the region. If no
region is marked, evaluates the
current definition.

7

February 1985 Program Development Tools and Techniques

Evaluate Changed Definitions Of Buffer (m-sh-E)
Evaluates all the definitions in
the current Zmacs buffer that
have changed since the definitions
were last evaluated.

Evaluate Changed Definitions (m-X)
Evaluates all the definitions in
any Zmacs buffer that have
changed since the definitions
were last evaluated.

Evaluate Buffer (m-X) Evaluates the current Zmacs
buffer.
Evaluate Into Buffer (m-) - Prompts for a Lisp form to

evaluate and prints the returned
values in the Zmacs buffer at
point.

Evaluate And Replace Into Buffer (m-X)
Evaluates the Lisp form following
point and replaces it with the
printed representation of the
values it returns.

Evaluate Minibuffer (n-ESCAPE) Prompts for a Lisp form to
evaluate in the minibuffer and
displays the returned values in
the echo area.

Evaluate (m-X) [Zmacs Window (R)]
Pops up a menu of options for
evaluating code in the current
context.

SUSPEND Enters a Lisp breakpoint loop,
where you can evaluate forms.
The current package in the
breakpoint loop is the same as in
the previous context. Use RESUME
to return to the previous context.

3.2.2 Lisp Input Editing
When typing to a Lisp Listener you can use many editing
commands to modify a form before you evaluate it. You often
repeat the same function calls or variations of similar function ecalls
when testing code. Instead of retyping these forms, you can use
the Lisp input editor’s ring of input entries to retrieve them within

78

Program Development Utilities February 1985

the same Lisp Listener. When you yank a previous form, the Lisp
input editor places the cursor at the end of the form but omits the
final close parenthesis or carriage return. You can then edit the
form before typing the final delimiter to evaluate it.

Example

We execute our program by calling the function do-arrow. We
evaluate (do-arrow) once and would like to evaluate it again within
the same Lisp Listener. We press e-m-¥ to yank the last form we
typed. if that is not (do-arrow), we press m-Y until (do-arrow
appears, without the close parenthesis. We type a close parenthesis
to begin the evaluation.

Reference

c-m-Y Yanks the last form typed to the
Lisp Listener. It waits after the
final delimiter for you to press
END, allowing you to edit the form
before evaluating it. With an
argument n, yanks the nth form
in the input ring. In Zmacs, this
command performs a different
action: it repeats the last
minibuffer command typed.

m=Y After a c-m-¥ command, deletes
the form just inserted, yanks the
previous form from the input
ring, and rotates the input ring.
Repeated execution yanks
previous forms and rotates the
input ring. In Zmacs, this
command rotates either the
minibuffer command history or
the text kill history, (depending
on which yanking command it
follows) and yanks elements from
that history. See the section
"Retrieving History Elements" in
Text Editing and Processing.

79

February 1985 Program Development Tools and Techniques

4. Debugging Lisp Programs

The Symbolics computer offers a variety of tools for debugging Lisp programs. The
kind of debugging aid you use depends on the application of the program. Bugs
might be more obvious in a graphics program than in a minor modification of some
internal system function. Problems with a graphics programs are sometimes evident
from the program’s output. On the other hand, programs with a complex window
system application might have bugs that are difficult to identify.

Debugging aids are more appropriate for some kinds of bugs than for others. You
commonly encounter three sorts of problems with a program:

» The program does not compile correctly. You can use the compiler
warnings database to edit code before recompiling.

» The program compiles, but running it signals an error. Usually
errors invoke the Debugger, where you can examine stack frames,
return values, disassemble code, call the editor, and perform other
tasks.

» The program runs but does not behave as it should. You can use
many techniques for finding the problem, including commenting out
sections of code, tracing, stepping, setting breakpoints,
disassembling, and inspecting. Often the most effective method is
simply studying the source code.

4.1 The Compiler Warnings Database

The compiler sometimes produces many warning messages. The compiler maintains

a database of these messages, organized by file. Each time you compile or recompile

code, the compiler adds or removes warnings from the database, so that the database
reflects the state of your program as of the last time you compiled it.

If you want to save warnings in a file, you can use Compiler Warnings (m-¥) to put
them in a buffer and then write them to a file. When you make a system using
make-system, you can use the :batch option to save compiler warnings in a file:
See the section "make-system Keywords", page 222. Use Load Compiler Warnings
(m-X) to load compiler warnings into the database from a file.

If compiler warnings exist in the database, Edit Compiler Warnings (m-X) lets you
edit source code while consulting the corresponding warnings. The command splits
the screen, with compiler warnings in one window and the source code to which the
warnings apply in the other. As you finish editing each section of code, you press
c-.. This displays the next warning in one window and the source code to which
the next warning applies in the other window. When you reach the last compiler
warning, pressing c-. returns the screen to its previous configuration.

Example

Elsewhere we discuss compiling the initial code for the calculation
module of the sample program: See the section "Compiling Code in
a Zmacs Buffer", page 70. Figure 5 shows the result of using Edit

80

Program Development Utilities February 1985

Compiler Warnings (n-x) after compiling the buffer with the initial
code. The compiler warnings are in the upper window and the
source code in the lower window.

Reference

Edit Compiler Warnings (n-¥X) Prepares to edit all source code
that has produced compiler
warnings. Lists each file whose
code produced warnings and asks
whether you want to edit that
file. Splits the screen, with
compiler warnings in the upper
window and source code that
produced those warnings in the
lower window. Use c-. to display
subsequent warnings and edit the
applicable code.

Compiler Warnings (m-X) Puts compiler warning messages
into a buffer and selects that
buffer.

Load Compiler Warnings (m-%) Loads a file containing compiler
warning messages into the
compiler warnings database.

4.2 The Debugger

Some errors during execution automatically invoke the Lisp Machine’s Debugger.
You can enter the Debugger at other times by pressing e-m-SUSPEND. You can also
enter the Debugger from within a program by inserting a call to dbg (with no
arguments) into the code and recompiling. You can force a process into the
Debugger by calling dbg with an argument of process. See the section "Breakpoints:
Program Development Tools and Techniques”, page 98.

The Debugger is useful for examining stack frames. With Debugger commands, you
can see the arguments for the current stack frame, disassemble its code, return a
value from it, go up and down the stack, and invoke the editor to edit function
definitions. A common Debugger sequence is to disassemble code for the current
frame, call the editor to edit and recompile the function, and test the changed
function.

A window-oriented version of the Debugger is the Display Debugger. Invoke it from
within the Debugger by pressing c-n-W.

Example
We use the variable *x2* in computing the thickness of each stripe.
x2 is the x-coordinate of the projection of the last stripe in each

81

February 1985 Program Development Tools and Techniques

Harnings for file VIKEN: /desss/doc/workstyles/pcodex.?

|B For Function DRAW-ARRON-GRAPHIC

The variable 3sTOP-EDGE-4% was never used.

The variable 3TOP-EDGE-2% was never used.

The variable 3PBX was never used.
DRAK-BIG-ARRON was referenced but not defined.

tConpi ler-Harnings-1%
(defun drau-arrou-graphic (t$top-edge® tpBx 2pOyz)
(let ((stop-edge-2% (/7 stop-edget 2))
(stop-edge-4x (/7 xtop-edgex 4)))
(draw-big~arrow)))

pcodex.| /dess/doc/workstyless UIKEN:

ZMACS (LISP) pcodex.| /dess/doc/workstyless VIXEN: %
Contro!-. is now Edit warnings for next function.

1 more definition as well

Point pushed

L:Hove point, L2:Move to point, M:Mark thin M2:SavesKillsYank, R:Henu, R2:System menu.
88,2883 16:49:52 ron GRAPHICS: Tyi

Figure 5. Edit Compiler Warnings (m-X) splits the screen. The upper window
contains compiler warnings. The lower window contains the source code.

82

Program Development Utilities February 1985

arrow onto the top edge. We must bind it for each arrow to the
difference between the value of *pOx* and twice the value of
top-edge®.

Suppose that we forget to bind *x2* for the big arrow in the
function draw-big-arrow. The initial value of *x2* is nil. In the
function compute-dens, we subtract *p0x* from *x2*. Because
the value of *x2* is not a number, we generate an error when we
first call the function. The error invokes the Debugger with the
name of the function in which the error occurred, the value of the
function’s arguments, and the following error message:

>>Trap: The first argument given to SYS:--INTERNAL, NIL, was not a number.

The Debugger also displays a listing of proceed types, special
commands, and restart handlers, along with their key bindings:

See the section "Special Keys" in Reference Guide to Symbolics-Lisp.
We can use one of these options, or we can use other Debugger
commands to examine or manipulate the stack. Let’s use c-m-U to
invoke the Display Debugger.

Figure 6 shows the Display Debugger frame as it looks when we
invoke it. The top window, an inspect pane, shows disassembled
code for compute-dens with an arrow at the instruction that
produced the error. The next window is an inspect history pane.
The two windows side by side show the function’s arguments and
local variables and their values. The next window is a backtrace of
the stack with an arrow at the frame that produced the error.
The next window is a mouse-sensitive listing of options for
proceeding or restarting. Next is a command menu. The bottom
window is a Lisp Listener with the error message displayed.

The disassembled code for compute-dens shows that the first
argument to the subtraction that caused the error was the value of
x2. We can inspect *x2* simply by clicking on its printed
representation in the disassembled code. Figure 7 shows the
Display Debugger after we inspect *x2*. The value of *x2* is nil.
We could have confirmed this by evaluating *x2x in the Lisp
Listener pane.

Now, if we remember what the value of *x2* is supposed to be, we
can set *x2* to that value by typing to the Lisp Listener pane:

(setq xx2x (- *pOxx xtop-edgex xtop-edgex))

We can then click on [Retry] to reinvoke the stack frame and
continue the program.

83

February 1985

Program Development Tools and Techniques

If we forget the value of *x2* we might want to look at the source
code. We can invoke the editor by clicking on [Edit] and then on
the name of the function we want to edit. Inside the editor, we
can change and recompile code. We can edit draw-big-arrow to
bind *x2* and then recompile that function. If we entered the
Debugger from the editor, we cannot return to the Debugger, but
we can run the program again. Otherwise, we can return to the
Display Debugger by pressing c-2. We can then set the value of
x2 and reinvoke the frame.

In the Debugger, c-HELP displays information on Debugger commands. Following are
some of the most useful commands:

Reference

c-A Shows arguments for the current stack frame.

c-E Calls the editor to edit the function from the
current frame.

c-L Clears the screen and redisplays the original error
message.

c-N Goes down the stack by one frame.

c-P Goes up the stack by one frame.

c-R Returns a value from the current frame.

m-B Shows a backtrace of function names with
arguments.

m-L Shows local variables and disassembled code for the
current frame.

c-m-R Reinvokes the current frame.

c-n-H Invokes the Display Debugger.

4.3 Commenting Out Code

Sometimes a program runs but behaves in an unexpected way. In looking for the
source of the problem, you might want to execute some portions of the program and
disable others. An easy way to disable code without destroying it is to make a
comment of it. You can comment out code by preceding it with a semicolon or
surrounding it with #[|...|1#: See the section "Comments: Program Development
Tools and Techniques", page 23.

Example

We have outlined the large arrow and the largest of the small
arrows. We try to outline the rest of the small arrows by adding
two recursive function calls to do-arrows:

84

Program Development Utilities

February 1985

. Mors adove
COMPUTE-DENS
3 PUSH-INDIRECT =Dix
BUILTIN --INTERNRL STACK
PUSH-LOCRL FP|8 3 ¥
PUSH-INDIRECT sPOXs
7 BUILTIN --INTERNAL STACK
18 PUSH-INDIRECT EBEZ5
11 PUSH-INDIRECT =P@X
=> 12 BUILTIN --INTERNAL STACK
13 BUILTIN FLOAT STACK
14 BUILTIN ~/-INTERNAL STRCK

[N &, N

More delow

#<Stack-Frane COMPUTE-DENS PC=12>

|arss: |Locals:
Arg 8 (X): 1800

More adove
(DO-ARROW)
(DRAK-ARROW-GRAPHIC 12688 1808 1880)
(DRAW-BIG-ARROW)
(STRIPE-ARROWHERAD)
(COMPUTE-NLINES 1808)
+(CONMPUTE-DENS 180@0)

More delow

Return to normal debugger, staying in error context.
Supply replacenent argunent

Return a value from the --INTERNAL instruction
Retry the --INTERNAL instruction

Lisp Top Level In Lisp Listener 1

What Error lnspect Return Set arg Retry
Arglist Edit Throw Search

T
NIL

»Trap: The first argunent given to SYS:~--INTERNAL, NIL, was not a number.

@8,208/83 17:01:23 'ronm GRAPHIC Tyi

Choose a value by pointing at the value. Right gets object into error handler.

Figure 6. The Display Debugger: inspecting the stack frame containing a call to

compute-dens.

85

February 1985 Program Development Tools and Techniques

Top of odject
£42%
Value is NIL
Function is unbound
Property list: (DOCUMENTARTION ®...° SPECIAL #<UNIX-PATHNAME °VIKEN: //dess//workstyles.
Package: #<Package GRAPHICS 36635277>

Bottom of odfect

B<Stack-Frane COMPUTE-DENS PC=12>
TX2¢

IArgs: jLocals:
Arg @ (R): 1806

More adove
(DO-ARROK)
(DRAK-ARROW-GRAPHIC 1280 1883 16008)
(DRAH-BIG-ARRONW)
(STRIPE-ARRONHEAD)
(COMPUTE-NLINES 1888)
+(COMPUTE-DENS 1889)

More delow

Return to normal debugger, staying in error context.
Supply replacenent argunent

Return a value from the —--INTERNAL instruction
Retry the --INTERNAL instruction

Lisp Top Level in Lisp Listener 1

What Error Inspect Return Set arg Retry T
Arglist Edit Throw Search NIL

> Trap: The first arqgument given to SYS:—-INTERNAL, NIL, was not a nunber.

Choose a value by pointing at the value. Right gets object into error handler.
88/728s/83 17:02:85 ron GRAPHICS: Tyi

Figure 7. The Display Debugger: inspecting the variable *x2*.

86

Program Development Utilities February 1985

(defun do-arrows ()
;; Don’t exceed maximum recursion level
(when (< xdepthx xmax-depthx)
;3 Bind values for half and one-fourth of top edge
(let ((xtop-edge-2x {// xtop-edgex 2))
(xtop-edge-4x (// xtop-edgex 4)))
(draw-arrow) ;Draw a small arrow
;3 Increment depth. Divide top edge in half. Bind new
;; coordinates for top right point of next arrow.
(let ((xdepthx (1+ xdepthx))
(xtop-edgex *xtop-edge-2x%)
(xp0xx*x (+ *top-edge-4x (- *pOxx xtop-edgex)))
(xpOyx (- *xpOyx xtop-edge-2%)))
;3 Draw a left-hand child arrow
(do-arrows))
;; Increment depth. Divide top edge in half. Bind new
;; coordinates for top right point of next arrow.
(let ((xdepthx (1+ xdepthx))
(*top-edgex xtop-edge-2x)
(xpOxx (- xpOxx xtop-edge-2x%))
(xp0yx (+ xtop-edge-4%x (- xpOyx xtop-edgex))))
;s Draw a right-hand child arrow
(do-arrows)))))

This code produces the result shown in figure 8. Something is
clearly wrong with at least one of the function calls, but the
complexity of the figure makes it difficult to see the source of the
error. We simplify the figure by making a comment of the second
recursive function call:

87

February 1985 Program Development Tools and Techniques

(defun do-arrows ()
;; Don’t exceed maximum recursion level
(when (< xdepthx xmax-depthx)
;; Bind values for half and one-fourth of top edge
(let ((xtop-edge-2x (// xtop-edgex 2))
(xtop-edge-4x (// xtop-edgex 4)))
(draw-arrow) ;Draw a small arrow
;3 Increment depth. Divide top edge in half. Bind new
;; coordinates for top right point of next arrow.
(let ((xdepthx (1+ xdepthx))
(xtop-edgex xtop-edge-2x)
(*p0xx (+ xtop-edge-4x (- xpOxx xtop-edgex)))
(xpOyx (- *pOyx xtop-edge-2x)))
;; Draw a left-hand child arrow
(do-arrows))
;3 Increment depth. Divide top edge in half. Bind new
;3 coordinates for top right point of next arrow.
#11
(let ((xdepthx (1+ xdepthx))
(xtop-edgex xtop-edge-2x)
(xpOxx (- *pOxx xtop-edge-2%))
(xpOyx (+ *xtop-edge-4x (- xpOyx xtop-edgex))))
;; Draw a right-hand child arrow
(do-arrows)))))
I #
M)

We recompile do-arrows (using c-sh-C), run the program again,
and obtain the results shown in figure 9. The small arrows now
appear to be the right size, and the number of recursion levels is
correct. The problem seems to lie in the positioning of the arrows,
or the calculation of the new values for *p0x* and *pOy*. On close
inspection, we see that the x-coordinates look correct, but the y-
coordinates are wrong. Instead of obtaining the new value of
pOy by subtracting *top-edge-2* from the old *pOy*, we should
subtract *top-edge-4* from *pOy*. We change the definition of
do-arrows:

88
Program Development Utilities February 1985

(defun do-arrows ()

(let ((xdepthx (1+ xdepthx))
(xtop-edgex xtop-edge-2x)
(xpOxx (+ xtop-edge-4x (- xpOx* xtop-edgex)))
(xpOyx (- xpOyx xtop-edge-4x)))
;; Draw a left-hand child arrow
(do-arrows))
;3 Increment depth. Divide top edge in half. Bind new
;3 coordinates for top right point of next arrow.
#11
(let ((xdepthx (1+ xdepthx))
(xtop-edgex xtop-edge-2x)
(xpOxx*x (- xpOxx xtop-edge-2x))
(xpOy* (+ xtop-edge-4x (- xpOyx xtop-edgex))))
;3 Draw a right-hand child arrow
(do-arrows)))))
#
)

When we recompile do-arrows and run the program again, we
obtain the results shown in figure 10. The first recursive function
call is now correct. Looking at the arguments in the second
function call, we see that the same error exists in the calculation of
the new *p0x*: We should subtract *top-edge-4*, not
top-edge-2, from the old *p0Ox*. We make the change, remove
the #]| and | |#, and recompile do-arrows. We obtain the results
shown in figure 1.

Example

Figure 4 shows a split screen, with graphic output in the upper
window and source code in the lower. To adjust the size of the
graphic for the smaller window, we have to change the arguments
to draw-arrow-graphic when we call that function from
do-arrow. We want to keep a record of the arguments we use to
produce a full-screen figure. We can make a comment of the call to
draw-arrow-graphic that uses full-screen arguments:

(defun do-arrow ()
(setq xdestx (make-instance ’screen-arrow-output))
(send terminal-io ’:clear-screen)

; (draw-arrow-graphic 1280 1800 1800))
(draw-arrow-graphic 640 1300 1800))

89

February 1985 Program Development Tools and Techniques

NIL
]

Lisp Listener 1

887167683 18:58: CRAPHICS: y

Figure 8. Output resulting from a faulty attempt to outline the small arrows
recursively.

90

Program Development Utilities

N
e N
R

Lisp Listener 1

58/15/83 19:02:2! ron !RH!H!E!: |y!_

Figure 9. Output resulting from a faulty attempt to outline the small arrows
recursively, with the second function call commented out.

February 1985

NIL

91

February 1985 Program Development Tools and Techniques

NIL

Ejsp LisFener 1

Figure 10. Output resulting from a corrected attempt to outline the small arrows
recursively, with the second function call commented out.

92

Program Development Utilities February 1985

4.4 Tracing and Stepping

4.4.1 Tracing
When a program runs but behaves unexpectedly, you might be
calling functions in the wrong sequence or passing incorrect
arguments. Tracing function calls can help detect this sort of
problem. By default, tracing prints a message, indented according
to the level of recursion, on entering and leaving a function. It also
prints the arguments passed and the values returned.

You can invoke tracing in three ways:

* Click on [Trace] in the System menu
¢ Use Trace (n-%) in Zmacs
 Use the trace special form

[Trace] and Trace (m-X) pop up a menu of options, including
stepping and inserting breakpoints. You can use these options with
trace, too, but the syntax is complex. Table 1 summarizes the
correspondence between trace menu items and trace options. For
a description of the options: See the section "Options to trace",
page 276.

Example

Suppose that we had begun writing the recursive function calls in
do-arrows with the following code, passing arguments to
do-arrows instead of binding the special variables:

(defun draw-arrow-graphic (xtop-edgex xpOxx *pOyx)

(draw-big-arrow)
(do-arrows 0 xtop-edge-2% (- *pOxx *xtop-edge-2x) (- *pOyx xtop-edge-2x)))

93

February 1985 Program Development Tools and Techniques

(defun do-arrows (*xdepthx xtop-edgex *pOxx xpOyx)
;; Don’t exceed maximum recursion level
(when (< xdepthx xmax-depthx)
;; Bind new values for half and one-fourth of top edge
(let ((xtop-edge-2x (// xtop-edgex 2))
(xtop-edge-4x (// xtop-edgex 4)))
;; Draw a small arrow
(draw-arrow)
;; Draw a left-hand child arrow, dividing top edge in half,
;3 incrementing depth, and passing new coordinates for top
;; right point
(do-arrows *xtop-edge-2x (1+ *xdepthx)
(+ xtop-edge-4x (- xpOxx xtop-edgex))
(- xpOyx xtop-edge-4x))
;; Draw a right-hand child arrow, dividing top edge in half,
;; incrementing depth, and passing new coordinates for top
;3 right point
(do-arrows *top-edge-2%x (1+ xdepthx) (- xpOx* *top-edge-4x)
(+ *top-edge-4x (- xpOyx xtop-edgex))))))

This code produces only the first of the small arrows. Again,
something appears to be wrong with the recursive function calls.
Using Trace (m-X), we trace calls to do-arrows. We run the
program again, and the following trace output appears:

{1 ENTER DO-ARROWS (0 640 1160 1160))
(2 ENTER DO-ARROWS (320 1 680 1000))
(2 EXIT DO-ARROWS NIL)
(2 ENTER DO-ARROWS (320 1 1000 680))
(2 EXIT DO-ARROWS NIL)

(1 EXIT DO-ARROWS NIL)

NIL

The problem here is immediately apparent: The order of the first
two arguments in the recursive function calls is reversed. We are
passing the new value of *top-edge* as the new value of *depth*.
Because this value exceeds that of *max-depth*, the function
returns after the first recursive call.

Reference

Trace (m—X) Traces or untraces a specified
function. Prompts for the name
of a function to trace and pops
up a menu of trace options.

94

Program Development Ulilities February 1985

[Trace] (from the System menu) Traces or untraces a specified
function. Prompts for the name
of a function to trace and pops
up a menu of trace options.

(trace (:function function-spec-1 option-1 option-2 ...) ...)
Enables tracing of one or more
functions. If function-spec is a
symbol, the keyword :function is
unnecessary. An argument can
also be a list whose car is a list of
function names and whose cdr is
one or more options. In this
case, all functions in the list are
traced with the same options.
With no arguments, returns a list
of functions being traced.

(untrace (:function function-spec-1) ...)
Disables tracing of one or more
functions. If function-spec is a
symbol, the keyword :function is
unnecessary. With no
arguments, untraces all functions
being traced.

4.4.2 Stepping

When a program behaves unexpectedly and tracing doesn’t reveal
the problem, you might step through the evaluation of a function
call. You can step through function execution by using step, [Step]
from a trace menu, or the :step option for trace.

You can step through the execution of a function only if it is
interpreted, not compiled. If you want to step through execution of
a compiled function, read the definition into a Zmacs buffer and use
a Zmacs command (such as e-sh-E) to evaluate it. See the section
"Evaluation and the Editor", page 75.

The Stepper prints a partial representation of each form evaluated
and the values returned. A back arrow (¢) precedes the
representation of each form being evaluated. A double arrow (2)
precedes macro forms. A forward arrow (+) precedes returned
values.

After printing, the Stepper waits for a command before proceeding
to the next step. Stepper commands allow you to specify the level
of evaluation to be stepped, escape to the editor, or enter a Lisp

95

February 1985

Program Development Tools and Techniques

Table 1. Trace Menu Items and trace Options

Trace menu item

[Cond break before]

[Break before]
[Cond break after]

[Break after]
[Error]
[Step]

[Cond before]

[Cond after]

[Conditional]

[Print before]

[Print after]

[Print]

[ARGPDL]

[Wherein]

[Per Process]

{Untrace]

trace option

:break predicate

sbreak t

:exitbreak predicate

:exitbreak t
serror

:step

sentrycond predicate
:exitcond predicate
:cond predicate
:entryprint form
:exitprint form
:print form

:argpdl pdl

:wherein function

:per-process process

tentry list
:exit list

:arg :value :both :nil

Description

Enters breakpoint on function entry
if predicate not nil

Enters breakpoint on function entry

Enters breakpoint on function exit
if predicate not nil

Enters breakpoint on function exit
Enters Debugger on function entry

Steps through (interpreted) function
execution

Prints trace output on function
entry if predicate not nil

Prints trace output on function
exit if predicate not nil

Prints trace output on function
entry and exit if predicate not nil

Prints value of form
in trace entry output

Prints value of form
in trace exit output

Prints value of form in
trace entry and exit output

On function entry, pushes list
of function name and args onto
pdl; pops list on function exit

Traces function only when
called within function

Traces function only in
process

Calls untrace on function

Prints values of forms in
list on function entry

Prints values of forms in
list on function exit

Controls printing of args
on function entry and values
on function exit

96

Program Development Utilities February 1985

breakpoint loop. For a list of commands, press HELP inside the
Stepper, or: See the section "Stepping Through an Evaluation”,
page 287. Following are some basic Stepper commands:

Command Action

c-N Evaluate until next thing to print

SPACE Evaluate until next thing to print at this level
(don’t step at lower levels)

c-U Evaluate until next thing to print at next level up
(don’t step at current and lower levels)

c-B Enter breakpoint loop

c-E Enter Zmacs

c-X Evaluate until finished (exit from stepping)

Example

We have the same problem with the function do-arrows as we
described elsewhere: See the section "Tracing: Program
Development Tools and Techniques”, page 92. The program
outlines only the largest of the small arrows, indicating a problem
with the recursive function calls. Instead of just tracing
do-arrows, we step through its evaluation. We first use c-sh-E to
evaluate the definition of do-arrows. We then use [Step] in the
menu that Trace (m-X) pops up to trace and step through
do-arrows. We run the program. The Stepper waits for a
command before evaluating each form in do-arrows. We press
SPRCE to skip to the next form at the same level. When we come
to the comparison of *depth* and *max-depth* in the recursive
calls, we want to see each level of evaluation. We press c-N at each
of these steps. The tracing and stepping output looks as follows:

97

February 1985 Program Development Tools and Techniques

(1 ENTER DO-ARROWS (0 640 1160 1160))
2 (WHEN (< XDEPTHx *MAX-DEPTHx) (LET ((*TOP-EDGE-2* (// XTOP-EDGE*
« (COND ((< *DEPTHx *MAX-DEPTHx) (PROGN (LET ((*TOP-EDGE-2% (// xT
(2 ENTER DO-ARROWS (320 1 680 1000))
¥ (WHEN (< *DEPTHx *MAX-DEPTHx) (LET ((*TOP-EDGE-2% (// *TOP-EDGEx
« (COND ((< xDEPTHx *MAX-DEPTHx) (PROGN (LET ((*TOP-EDGE-2% (// xT
« (< xDEPTHx xMAX-DEPTHx)
« XDEPTHx » 320
« XMAX-DEPTHx » 7
« (< *DEPTHx x*MAX-DEPTHx) -» NIL
« (COND ((< xDEPTHx xMAX-DEPTHx) (PROGN (LET ((*TOP-EDGE-2x (// *T =» NIL
(2 EXIT DO-ARROWS NIL)
(2 ENTER DO-ARROWS (320 1 1000 680))
2 (WHEN (< xDEPTHx *MAX-DEPTHx) (LET ((*TOP-EDGE-2* (// xTOP-EDGEx
« (COND ((< *DEPTHx *MAX-DEPTHx*) (PROGN (LET ((XTOP-EDGE-2x (// *T
« (< *DEPTHx xMAX-DEPTHx)
« XDEPTHx » 320
« XMAX-DEPTHx » 7
« (< XDEPTHx xMAX-DEPTHx) - NIL
« (COND ((< *DEPTHx xMAX-DEPTHx) (PROGN (LET ((*TOP-EDGE-2% (// *T -» NIL
(2 EXIT DO-ARROWS NIL)
(1 EXIT DO-ARROWS NIL)
NIL

In this example, stepping shows even more clearly than tracing that
the value of *depth* is wrong in the recursive function calls.

Reference

(step form) Steps through the evaluation of
form

Trace (m-X) [Step] Steps through the execution of a

function being traced.

[Trace / Step] (from the System menu)
Steps through the execution of a
function being traced.

(trace (:function function-spec :step))
Steps through the execution of a
function being traced. If
function-spec is a symbol, the
keyword :function is
unnecessary.

98

Program Development Ulilities ' February 1985

4.5 Breakpoints

In debugging a program, you might want to interrupt function execution to enter a
Lisp breakpoint loop or the Debugger. Entering the Debugger is usually more
useful, for there you can examine the stack, return values, and take other steps in
addition to evaluating forms.

You can use two general kinds of breakpoints:

» You can edit into a definition a call to dbg (with no arguments) or
to break. The advantage of this kind of breakpoint is that, as
with stepping, you can interrupt execution within the function.
The disadvantage is that you have to edit and recompile the
definition to insert and remove the breakpoint. If you redefine the
function after inserting the breakpoint, the breakpoint might be
lost.

» You can use breakon or one of the error or break options to
trace. These features create encapsulations, functions that contain
the basic definitions of the functions to which you want to add
breakpoints. For more on encapsulations: See the section
"Encapsulations" in Reference Guide to Symbolics-Lisp. The
advantage of this kind of breakpoint is that when you recompile or
otherwise redefine the function, only the basic definition is replaced,
and the breakpoints remain. The disadvantage is that you can
interrupt function execution only on entry or exit, not within the
function.

You insert these breakpoints by calling breakon or trace from a
Lisp Listener or by using the trace menu; you remove them by
calling unbreakon or untrace. When you break on entering
function execution, just before applying the function to its
arguments, the variable arglist is bound to a list of the arguments.
When you break on exiting from function execution, just before the
function returns, the variable values is bound to a list of the
returned values.

From either a breakpoint loop or the Debugger, RESUME allows the program to
continue, and ABORT returns control to the previous break or, if none exists, to top
level.

Example)
We decide to break on entry to do-arrows and enter the Debugger
while tracing the function. We use Trace (m-X) and then [Error]
from the trace menu. We select a Lisp Listener and run the
program. On the first entry to do-arrows we enter the Debugger,
with the following message:

99

February 1985 Program Development Tools and Techniques

>> TRACE Break: DO-ARROWS entered.

DO-ARROWS: (encapsulated for TRACE)
Rest arg (ARGLIST): (0 640 1160 1160)
s-A, RESUME: Proceed without any special action

s-B, ABORT: Lisp Top Level in Lisp Listener 1

-5

Reference

(dbg process) Enters the Debugger in process.

With an argument of t, finds a
process that has sent an error
notification. With no argument,
enters the Debugger as if an
error had occurred in the current
process.

(break tag conditional-form) Enters a Lisp breakpoint loop
(identified as "breakpoint tag") if
conditional-form is not nil or is
not supplied.

(breakon function-spec conditional-form)
Passes control to the Debugger
on entering function-spec if
conditional-form is not nil or is
not supplied. With no
arguments, returns a list of
functions with breakpoints
specified by breakon.

(unbreakon function-spec conditional-form)
Turns off the breakpoint
condition specified by
conditional-form for function-spec.
If conditional-form is not
supplied, turns off all breakpoints
specified by breakon for
function-spec. With no
arguments, turns off all
breakpoints specified by breakon
for all functions.

[Error] (from a trace menu) Passes control to the Debugger
on entering a function being
traced.

100

Program Development Ulilities

February 1985

[Cond break before] (from a trace menu)

Prompts for a predicate. Displays
trace entry information and
enters a Lisp breakpoint loop on
entering a function being traced
if the predicate is not nil.

[Cond break after] (from a trace menu)

Prompts for a predicate. Displays
trace exit information and enters
a Lisp breakpoint loop on exiting
from a function being traced if
the predicate is not nil.

(trace (:function function-spec :error))

(trace (:function function-spec :

Passes control to the Debugger
on entering a function being
traced. If function-spec is a
symbol, the keyword :function is
unnecessary.

break predicate))

Prints trace entry information
and, if the value of predicate is
not nil, enters a Lisp break loop
on entering the function. If
function-spec is a symbol, the
keyword :function is
unnecessary.

(trace (:function function-spec :exitbreak predicate))

4.6 Expanding Macros

Prints trace exit information and,
if the value of predicate is not
nil, enters a Lisp break loop on
exiting from the function. If
function-spec is a symbol, the
keyword :function is
unnecessary.

Sometimes a program bug appears to stem from unexpected behavior by a macro.
Seeing how a macro form expands can help find the bug. To be sure that a macro
does what you want it to, you might also want to create and expand a macro form
soon after defining the macro and compiling the definition.

You can expand a macro form in a Zmacs buffer using Macro Expand Expression
(c-sh-M). This command expands the form following point, but not any macro forms
within it. To expand all subforms, use Macro Expand Expression All (m-sh-t1). You can

101

February 1985 Program Development Tools and Techniques

also expand macro forms with mexp, which enters a loop to read and expand one
form after another.

Example

We have just written code to stripe the shafts of the small arrows,
drawing stripes with uniform spacing and density. We produce the
results shown in figure 11. We evidently have a problem with the

function draw-arrow-shaft-stripes. The code for this function is
as follows:

(defun draw-arrow-shaft-stripes
(left-x top-y right-x bottom-y)
;3 Find y-coord of starting point of stripe. Don’t go
;; below the bottom of the triangle.
(loop for start-y from top-y by *stripe-distancex above bottom-y
;3 Find x-coord of ending point of the stripe
for end-x from right-x by *stripe-distancex
;; Draw a stripe y
do (draw-arrow-shaft-1lines
left-x start-y end-x bottom-y)))

The bug stems from incorrect coordinates for the endpoints of the
shaft stripes. The beginning coordinates (left-x and start-y) are

correct. The ending y-coordinate (bottom-y) looks right, but the

ending x-coordinate (end-x) is wrong. The problem might not be

evident from looking at the code, which consists entirely of a loop
form. We move to the beginning of the loop form and expand it,
using c-sh-M:

((LAMBDA (START-Y G1049 G1050)
((LAMBDA (END-X G1051)
(PROG NIL
(AND (NOT (GREATERP START-Y G1050)) (GO SI:END-LOOP))
SI:NEXT-LOOP
(DRAW-ARROW-SHAFT-LINES LEFT-X START-Y END-X BOTTOM-Y)
(SETQ START-Y (DIFFERENCE START-Y G1049))
(AND (NOT (GREATERP START-Y G1050)) (GO SI:END-LOOP))
(SETQ END-X (PLUS END-X G1051))
(GO SI:NEXT-LOOP)
SI:END-LOOP
))
RIGHT-X
xSTRIPE-DISTANCE*))
TOP-Y
xSTRIPE-DISTANCEX
BOTTOM-Y)

102

Program Development Ulilities

February 1385

NIL

,//
(

I/

7/
W

Z
7

/2

Lisp Listener 1

¥8716-,83 19:89:13 ron RAPH s Tyi___

Figure 11. Output from the program with a bug in the function
draw-arrow-shaft-stripes.

103

February 1985 Program Development Tools and Techniques

The expansion shows the lambda-bindings and prog form that the
loop macro creates. We can see that the error is in the setting of
end-x within the prog form: We are incrementing end-x by
*stripe-distance®, when we should be decrementing it. The
problem is in our use of a loop keyword. Instead of writing

for end-x from right-x by *stripe-distancex

we should have written

for end-x downfrom right-x by %stripe-distancex

We make the change and recompile draw-arrow-shaft-stripes.
Now if we expand the loop form, we see that we are decrementing
end-x:

((LAMBDA (START-Y G1062 G1063)
((LAMBDA (END-X G1064)
(PROG NIL
(AND (NOT (GREATERP START-Y G1063)) (GO SI:END-LOOP))
SI:NEXT-LOOP
(DRAW-ARROW-SHAFT-LINES LEFT-X START-Y END-X BOTTOM-Y)
(SETQ START-Y (DIFFERENCE START-Y G1062))
(AND (NOT (GREATERP START-Y G1063)) (GO SI:END-LOOP))
(SETQ END-X (DIFFERENCE END-X G1064))
(GO SI:NEXT-LOOP)
SI:END-LGCOP
))
RIGHT-X
*STRIPE-DISTANCEX))
TOP-Y
*STRIPE-DISTANCEx
BOTTOM-Y)

Reference

Macro Expand Expression (c~sh-M)
Expands the macro form following
point. Does not expand subforms
within the form.

Macro Expand Expression All (w-sh-HM)
Expands the macro form following
point and all subforms within the
form.

104

Program Development Ulilities February 1985

(mexp) Enters a loop: prompts for a
macro form to expand, expands it,
and prompts for another macro
form. Exits from the loop on nil.

4.7 The Inspector

The Inspector is a window-based tool that combines the describe and disassemble
functions. Invoke it with inspect, SELECT I, or [Inspect] from the System menu.

If you use inspect, the Inspector is not a separate activity from the Lisp Listener in
which you invoke it. In that case you cannot use SELECT L to return to the Lisp
Listener; you must click on [Exit] or [Return] in the Inspector menu.

The Inspector displays information about an object and lets you modify the object.
It displays information for the last object inspected in the bottom window. It
displays information for the two previous objects in the windows above the bottom
one. It maintains a mouse-sensitive listing of all inspected objects in the history
window. These are some of its useful features:

» The information the Inspector displays depends on the object’s
type. For a symbol, it displays a representation of the value,
function, property list, and package. For a symbol’s flavor property,
it displays information about instance variables, component and
dependent flavors, the message handler, init keywords, and the
flavor property list. For a compiled function, it displays the
disassembled assembly-language code that represents the compiler
output.

» The Inspector is especially useful for examining data structures. It
displays the names and values of the slots of structures and, unlike
describe, the elements of (one-dimensional) arrays. For instances
of flavors, the Inspector displays the names and values of instance
variables.

Within each display, most representations of objects are mouse
sensitive. If you click on an object representation, you inspect that
object. For example, you can inspect elements of lists. If an
element of an array is itself an array, you can inspect the second
array. In this way you can follow long paths in data structures.

» You can change a value by using the [Modify] option in the
Inspector’s menu. You can return a value when you exit the
Inspector by clicking on [Return].

For more on the Inspector: See the section "The Inspector", page 293.

Example
Suppose we had represented each arrow as an instance of a
structure (defined with defstruct) instead of a collection of special-

105

February 1985

Program Development Tools and Techniques

variable values. We could have called the structure representing
the small arrows arrow and set the value of a special variable,
arr®, to each instance of the structure as we created it.

Figure 12 shows an Inspector window for the last arrow in the
figure. We first run the program in a Lisp Listener, then invoke
the Inspector using SELECT I. Because we typed (pkg-goto
*graphics) in the Lisp Listener, the Inspector’s package is
graphics. We type xarrx to the interaction pane at the top of the
frame. The window at the bottom of the frame displays the names
and values of the structure slots. We can change these values by
using the [Modify] menu option.

Example

Suppose we had represented each arrow as an instance of a flavor
and defined most of our computation functions as flavor methods
instead of simple functions. We could have called the flavor
representing the small arrows arrow and set the value of *arr* to
each instance of the flavor as we created it.

Figure 13 shows an Inspector window for the last arrow in the
figure. As with our structure example, we first run the program
and then invoke the Inspector to evaluate *arr* and inspect the
flavor instance that is its value. The Inspector displays the names
and values of instance variables and a representation of the flavor’s
message handler.

We next click on the mouse-sensitive representation of the message
handler. The Inspector displays a representation of the function
spec for the method that handles each message. If we click on the
function spec for the :compute-dens method of flavor
basic-arrow, the Inspector displays the method’s disassembled
code.

Reference

(inspect object) Selects an Inspector window in
which to inspect object.

SELECT 1 Selects an Inspector window.

[Inspect] (from the System menu)Selects an Inspector window.

(disassemble function) Prints a representation of the
assembly-language instructions for
a compiled function.

Disassemble (m-X) Prompts for the name of a
compiled function and displays a

106

Program Development Utilities

February 1985

Earrt

Top of History Exit
#<ARROW -332470621> Return
Modify
DeCache
Clear
Set \
1 Bottom of History
I fﬁpq{owwu
Empty
Bottom of odject
Top of odject
|Empty

Bottom of odject

DEPTH:
TOP-EDGE:
TOP-EDGE-2:
TOP-EDGE-4:
K2:
STRIPE-D:
POX:

POBY:

P1X:

P1Y:

P2K:

P2Y:

PSK:

PSY:

PEX:

P6Y:

#<ARROW -33247021>
Named structure of type ARROW

6
10
S

2
825
10
845
215
835
215
837
213
843
287
845
285

Top of odject

Bottom of odject

Choose a value by pointing at the value. Right finds function definition.

88717,83 18:23:32 ron GRAPHICS: Tyi____

Figure 12. The Inspector window: inspecting an instance of a structure.

107

February 1985 Program Development Tools and Techniques

representation of the function’s
assembly-language instructions.

108

Program Development Uliiities February 1985
Fgarrt
Top of History Exit
#<ARROW 108820842> Return
Modlfy
DeCache
Clear
Set
Bottom of History
Top of odject
Empty
Bottom of odject
Top of odject
Empty

Bottom of odject

#<ARROW 10020042>

An instance of ARROW. Eﬁﬂ:mqs_nmﬁmaﬂﬁﬂeﬁ

DEPTH: 6

TOP-EDGE: 10
TOP-EDGE-2: S

TOP-EDGE-4: 2

X2: 825
STRIPE-D: 10

PBX: 845
PaY: 215
P1X: 835
P1Y: 215
P2X: 837
P2Y: 213
P5X: 843
PSY: 2087
P6EX: 845
P6Y: 285

Top of odject

Bottom of odject

Figure 13.

The Inspector window: inspecting an instance of a flavor.

GRAPHICS:

Choose a value by pointing at the value. Right finds function definition.

88,28/83 17:89:18 ronm Tyl

109

February 1985 Program Development Tools and Techniques

Earrt
7‘op of History Exit

#<ARROW 18820042> Return
#<Message handler for ARROW> Modi fy
DeCache
Clear
Set \
Bottom of History

Top of 0dject

Fmpty

Bottom of odject
Top of odject

#<ARROW 10020042>
An instance of ARROW. #<Message handler for RRRCW>

DEPTH: 6
TOP-EDGE: 18
TOP-EDGE-2: S
More delow

7‘o,p of odject

#<{Message handler for ARROW>

:COMPUTE-DENS: 4" (:METHOD BRSIC-ARROW :COMPUTE-DENS
:COMPUTE-NLINES: #° (:METHOD BASIC-ARROW :COMPUTE-NLINES)
:COMPUTE-POINTS: #’ (:METHOD BASIC-ARROW :COMPUTE-POINTS)
:COMPUTE-STRIPE-D: #’ (:METHOD BRSIC-RARROW :COMPUTE-STRIPE-D)
:COMPUTE-TOP-EDGES: #° (:METHOD BRSIC-ARROW :COMPUTE-TOP-EDGES)
DESCRIBE: #’ (:METHOD SI:VANILLA-FLRYOR DESCRIBE)

: DRAN-RRROW : #’ (:METHOD BASIC-ARROW :DRAW-ARROW)

: DRAN-ARROW-SHAFT-LINES: #* (:METHOD ARROW-MIXIN :DRAW-ARROW-SHAFT-LINES)

: DRAW-ARROW-SHAFT-STRIPES: #’ (:METHOD ARROW-MIXIN :DRAW-ARROW-~SHAFT-STRIPES)
: BRAK-ARROWHERD-LINES: #’ (:METHOD BRSIC-RRROMW :DRAW-ARROWHEAD-LINES)
:DRAW-0UTLINE: #’ (:METHOD ARROW-MIXIN :DRAW-OUTLINE)
:EVAL-INSIDE-YOURSELF: #’ (:METHOD SI:VANILLA-FLAVOR :EVAL~-INSITE-YOURSELF)
:FUNCALL-INSIDE-YOURSELF: #° (:METHOD SI:UANILLA-FLAVOR :FUNCALL-INSIDE-YOURSELF)
GET-HANDLER-FOR: #’ (:METHOD SI:VANILLA-FLAVOR GET-HARNDLER-FOR)
:OPERATION-HANDLED-P: #’ (:METHOD SI:UANILLA-FLAYOR :0PERATION-HANDLED-P)
:PBX: #’ (:METHOD BASIC-ARROW :PBK)

:PBY: #° (:METHOD BASIC-ARROW :PBY)

:PRINT-SELF: #° (:METHOD SI:UANILLA-FLAVOR :PRINT-SELF)
:SEND-IF-HRNDLES: #’ (:METHOD SI:VANILLA-FLAYOR :SEND-IF-HANDLES)
:SET-STRIPE-D: #’ (:METHOD BASIC-ARRROW :SET-STRIPE-D)
:STRIPE-ARRCW-SHAFT : #’ (:METHOD ARROW-MIXIN :STRIPE~ARROW-SHAFT)
:STRIPE-ARROWHERD: #’ (:METHOD BASIC-ARROW :STRIPE-ARROWHERD)

More delow

Choose a value by pointing at the value. Right finds function definition.
88/28/83 17:09:42 rom GRAPHICS: Tyi

Figure 13, continued.

110

Program Development Ulilities

February 1985

tarrt

Top of History
#<ARROW 18020042>
#<Message hand!er for ARROW>
#’ (:METHOD BRSIC-ARROW :COMPUTE-DENS)

Bottom of History

Exit
Return
Modi fy
DeCache
Clear
Set N\

Top of object
#<CARROW 10020042>
An instance of ARROH. #<Message handler for ARROW>

DEPTH: 6
TOP-EDGE:: 10
TOP-EDGE-2: S

More delow

Top of odject
#<{Message handler for ABRROW>
:COMPUTE-DENS: #’ (:METHOD BASIC-ARROW :COMPUTE-DENS)
:COMPUTE-NLINES: #’ (:METHOD BRSIC-ARROW :COMPUTE-NLINES)
:COMPUTE-POINTS: #’ (:METHOD BRSIC-RRROW :COMPUTE-POINTS)
:COMPUTE-STRIPE-D: #’ (:METHOD BASIC-RRROW :COMPUTE-STRIPE-D)
:COMPUTE-TOP-EDGES: #’ (:METHOD BRSIC-ARROW :COMPUTE-TOP-EDGES)

Top of odject
#<{DTP-COMPILED-FUNCTION (:METHOD BASIC-ARROW :COMPUTE-DENS) 46660073>
ENTRY: 4 REQUIRED, 8 OPTIONAL
PUSH-INDIRECT x*Dix

PUSH-INDIRECT xD2%

PUSH-INDIRECT %*Dix

BUILTIN --INTERNAL STRCK

PUSH-LOCAL FP|3 H s
PUSH-INSTANCE-YARIABLE 2 ;PGX

BUILTIN --INTERNAL STRACK

180 PUSH-INSTANCE-VARIABLE 15 ; K2

11 PUSH-INSTANCE-VARIABLE 2 ;POX

12 BUILTIN --INTERNAL STACK

13 BUILTIN FLORT STACK

14 BUILTIN ~»-INTERNRL STRCK

15 BUILTIN *x-INTERNAL STACK

16 BUILTIN +-INTERNAL STACK

17 RETURN-STACK

NOANDRWON—-O©

Bottom of odject

Choose a value by pointing at the value. Right finds function definition.
©8/28/83 17:108:086 rom GRAPHICS: Tyi

Figure 13, concluded.

m

February 1985 Program Development Tools and Techniques

5. Using Flavors and Windows

All Lisp Machine Lisp programmers must know how to use flavors and the window
system in at least an elementary way. Flavors are the basis of a powerful,
nonhierarchical kind of object-oriented programming. Even if you don’t use them
extensively, the system code does. Applications that include screen display or user
interaction must deal with the window system, which is itself built on flavors.

In this chapter we present a brief introduction to using flavors and windows. We do
not discuss the concepts and organization of flavors and the window system in any
detail. Instead, we modify the output module of our example program to show some
simple uses of flavors, windows, and menus. We show basic examples of the
following features:

« Using base, mixin, and instantiable flavors and :daemon method
combination

» Creating a simple window and associating it with a process
» Producing LGP output

« Altering values nsing a choose-variable-values window

» Signalling a condition and proceeding

We also present some editor commands and Lisp functions for finding information
about flavors and windows. Among the issues we do not discuss in any detail are
the following:

*» Using types of method combination other than :daemon
e Interacting with the mouse process

» Creating frames

» Specifying fonts

« Using menus

For more information on flavors and windows, read the following:

* On flavors: See the section "Flavors" in Reference Guide to
Symbolics-Lisp.

» On windows: See the section "Using the Window System" in
Programming the User Interface.

» On menus: See the section "Window System Choice Facilities" in
Programming the User Interface.

» On conditions and errors: See the section "Conditions" in Reference
Guide to Symbolics-Lisp.

112

Program Development Ulilities February 1985

51 Program Development: Modifying the Output Module

As now written, the output routines of our example program consist of a flavor and
methods that produce lines on the stream to which terminal-io is bound:

(defflavor screen-arrow-output
((scale-factor 2.5))
())

(defmethod (screen-arrow-output :show-lines)
(X y &rest x-y-pairs)

(Toop for x0 = (send self ’:compute-x x) then X1
for y0 = (send self ’:compute-y y) then y1
for (x1 y1) on x-y-pairs by #’cddr
do (setq x1 (send self ’:compute-x x1)

y1 (send self ’:compute-y y1))
(send terminal-io ’:draw-1line
x0 y0 x1 y1 tv:alu-ior t)))

(defmethod (screen-arrow-output :compute-x) (x)
(fixr (// x scale-factor)))

(defmethod (screen-arrow-output :compute-y) (y)
(fixr (- 800 (// y scale-factor))))

We want to be able to produce output on the screen, an LGP, or a file. For this we
need a simple device-independent graphics system that uses generic operations. The
central operation is :show-lines, which receives endpoint coordinates from the
calculation module and produces lines on the appropriate output stream. Our
general strategy for creating the output options is as follows:

1. Define a flavor and methods to calculate the position of the arrow
figure on the screen or page. We can use this mixin with flavors
that produce any kind of output.

2. Define flavors and methods to produce screen output. We build the
instantiable flavors on tv:window and instantiate them with
tvimake-window. We define two kinds of arrow window flavors:

A basic flavor that performs output and redisplays the window after
changes.

« A flavor, which we instantiate, that is built on the basic window
and includes a mixin to convert LGP coordinates to screen
coordinates.

3. Define a flavor and methods to produce LGP or file output.
4. Define a top-level function that uses a choose-variable-values window

113

February 1985

Program Development Tools and Techniques

to select the type of output and alter some variables. The function
calls tv:make-window or makes an instance of the LGP flavor,
depending on the output type.

. Change the arrow-window flavors to allow multiple windows,

associate each window with its own process, and allow the user to
modify the characteristics of the figure in each window.

. Define a function to check for mistakes when the user changes the

values of variables. We define condition flavors for the incorrect
choices. We define handlers for the conditions and use signal to
signal them. We allow the user to proceed by supplying new values
for the variables.

We want to preserve modularity in writing these new routines. We define the flavor
that positions the arrow figure so that we can use it with any sort of output. We
keep the operations that transform LGP to screen coordinates separate from the
basic window operations. We define the routines that handle bad variable values as
separate flavors and functions. These precautions make it easy to define new kinds
of windows or to check for errors in other variable values in the future.

51.1 A Mixin to Position the Figure

No matter what the output device, we want to be sure that the
figure fits within the bounds of the page or window and is centered
within the page or window. We define a mixin flavor,
arrow-parameter-mixin, with methods to perform these
calculations. We include this flavor in all flavors that produce
output for the figure.

We define five instance variables to hold the parameters. Three of
these, top-edge, right-x, and top-y, are the arguments we must
pass to the calculation module. We make these three instance
variables gettable so that we can retrieve them by sending messages
to an instance of the dependent flavor. The other two instance
variables are the width and height of the page or window in the
appropriate units, either LGP or screen pixels.

(defflavor arrow-parameter-mixin
(width height top-edge right-x top-y)
Q)
(:gettable-instance-variables top-edge right-x top-y)
(:documentation :mixin
"Provides parameters for size and position of figure.
Instance variables hold width and height of page or window;
length of top edge of figure; coordinates of top right point
of figure.")) '

14
Program Development Ulilities February 1985

The task of this flavor is to perform a generic operation, which we
call :compute-parameters. This operation consists of separate
computations for top-edge, right-x, and top-y. We define primary
methods for these operations here, using coordinates with the origin
at bottom left. Flavors that mix in this one can add daemons,
whoppers, or their own primary methods to accommodate other
coordinate systems and scale factors.

We perform these operations as follows:

1. Determine the width and height of the page or window. The
details of this operation are the business of other flavors. We
specify a required method, :compute-width-and-height, for any
flavor that mixes in this one. We send self a
:compute-width-and-height message to set the instance variables.

2. Calculate a provisional value for top-edge so that the figure fits
within the smaller dimension of the page or window. We allow the
user to specify, by setting the global variable *fill-proportion®*,
what fraction of this dimension the figure should fill.

3. Adjust the top edge so that its value is at least 128 and is a
multiple of 128 if larger. This adjustment ensures that stripe
spacing is continuous throughout the levels of the figure.

4. Calculate right-x and top-y so that we center the figure within
the page or window.

The complete code for this flavor and its methods is as follows:

| (defvar xfill-proportionx 0.9
| "Proportion of smaller dimension to be filled by figure*)

115

February 1985

Program Development Tools and Techniques

(defflavor arrow-parameter-mixin
(width height top-edge right-x top-y)
0
(:gettable-instance-variables top-edge right-x top-y)
(:required-methods :compute-width-and-height)
(:documentation :mixin
"Provides parameters for size and position of figure.
Instance variables hold width and height of page or window;
length of top edge of figure; coordinates of top right point
of figure. Methods calculate size and position of figure by
centering it within the page or window and making it fill no
more than the specified proportion of the smaller dimension.
The methods use a coordinate system with origin at bottom left;
other mixins must correct for this if output is going to a
window. Other flavors must also provide a method for calculating
width and height of the page or window. This flavor should be
mixed into any instantiable flavor that produces output for the
arrow graphic.”))

;3 Method controlling calculation of size and position of figure.
;; Sends messages to self to calculate width and height of page
;33 or window, length of top edge of figure, and coordinates of
;; figure’s top right point. These are separate methods so that
;33 other flavors can shadow them or add daemons. Another flavor
;35 must provide a method to compute width and height, because
;3; this is specific to the output device.

(defmethod (arrow-parameter-mixin :compute-parameters) ()

;; Another flavor must supply method for width and height

(send self ’:compute-width-and-height)

;; Make a preliminary estimate of length of top edge

(send self ’:compute-top-edge)

;3 Adjust top edge to make it a multiple of 128

(send self ’:adjust-top-edge)

;; Calculate coordinates of top right point of figure.

;; We can’t do this until we know how long top edge is.

(send self ’:compute-right-x)

(send self ’:compute-top-y))

116

Program Development Ulilities February 1985

; Makes a preliminary estimate of length of top edge.
; The top edge of the arrow is 80 percent of the horizontal
; or vertical length of the whole figure. First finds the
; smaller of the length or width of the page or window.
; Multiplies this by the proportion of this dimension that
; is to be filled by the figure. The result is the
; horizontal or vertical length of the figure. Multiplies
; this by 0.8 to get the length of the top edge.
efmethod (arrow-parameter-mixin :compute-top-edge) ()
(setq top-edge

(fixr (x 0.8 xfill-proportionx (min width height)))))

;33 Adjusts length of top edge so it is a multiple of 128.

; There are 64 stripes in the head of the large arrow. The
+33 calculation module divides the length of top edge by two
;;; each time it goes down another recursion level. By making
;;; the original top edge a multiple of 128, we maximize
;33 continuity in striping between arrowheads and shafts and
;;; among the first several levels of recursion.

(defmethod (arrow-parameter-mixin :adjust-top-edge) ()
(setq top-edge
;s Minimum length of top edge is 128
(if (< top-edge 256) 128
;3 Otherwise set to next lower multiple of 128
(x 128 (fix (// top-edge 128))))))

;; Calculates x-coordinate of top right point of figure.
;;; Finds horizontal length of figure by dividing length of
;;; top edge by 0.8. Centers the figure horizontally within

.
’

e
mo

;33 the page or window.
(defmethod (arrow-parameter-mixin :compute-right-x) ()
(setq right-x

(fixr (x 0.5 (+ width (// top-edge 0.8))))))

;3; Calculates y-coordinate of top right point of figure.
;33 Assumes that the origin is at bottom. Finds vertical
;33 length of figure by dividing length of top edge by 0.8.
;33 Centers the figure vertically within the page or window.
(defmethod (arrow-parameter-mixin :compute-top-y) ()
(setq top-y
(fixr (x 0.5 (+ height (// top-edge 0.8))))))

5.1.2 The Basic

Arrow Window

We want to build our window on tv:window, a flavor that
produces a simple window with borders, a label, and graphics. Any
arrow window we use must provide for initialization and redisplay,

n7

February 1985

Program Development Tools and Techniques

determine its width and height, and supply a :show-lines method
to draw our figure.

We define a mixin flavor, basic-arrow-window-mixin, with
methods to do these things. We require that this flavor be used
with arrow-parameter-mixin and tv:iwindow. For the basic
window, we assume that the coordinates supplied to :show-lines
are screen coordinates, with origin at top left.

We write basic-arrow-window-mixin as follows:

. Define the flavor. The :required-flavors option ensures that we

have access to the flavors’ instance variables and that an error will
be signalled if someone makes an instance of a flavor that includes
basic-arrow-window-mixin but not the required flavors. The
:default-init-plist option provides values for some elements of the
initialization property list in case no one else specifies them. The
:edges-from option with an argument of *:mouse allows the user
to specify the initial size and position of the window by using
mouse corners. We give an initial minimum width and height for
the window because the length of top-edge must be at least 128,
and we want the entire figure to fit inside the window.

(defflavor basic-arrow-window-mixin () ()
(:required-flavors arrow-parameter-mixin tv:window)
(:default-init-plist
:edges-from *:mouse :minimum-width 200 :minimum-height 200
:blinker-p nil :expose-p t)
(:documentation :mixin
“"Provides for a basic window to display the arrow graphic.
ARROW-PARAMETER-MIXIN is needed to position the figure within
the window. This flavor assumes window coordinates, with origin
at top left."))

. Provide a :show-lines method to draw lines on the screen. We use

essentially the same methods as in our original output module, but
now we assume that the arguments are screen coordinates. We
define separate :compute-x and :compute-y methods to transform
the coordinates so that we can shadow these methods when we
define another flavor to handle LGP coordinates. To produce the
lines we use the :draw-line method defined for
tv:graphics-mixin, a component of tv:window. (In :daemon
method combination, when two component flavors have primary
methods for the same message, the method of the flavor listed
earlier in the component ordering shadows, or replaces, the method
of the flavor listed later. For more on method combination: See
the section "Method Combination" in Reference Guide to
Symbolics-Lisp.)

118

Program Development Ulilities February 1985

;;; Receives endpoint coordinates and draws lines on a window.
;3; Arguments are alternating x- and y-coordinates of the end-
;3; points of lines to be drawn. If there are more than two pairs
;;; of coordinates, assumes that the endpoint of one line is the
;3; starting point of the next. Sends messages for separate methods
;;; to determine the actual coordinates. This is so that other
;;; flavors can modify the coordinates. Draws a line by sending self
;3; a :DRAW-LINE message, and so assumes that TV:GRAPHICS-MIXIN is
;33 included somewhere to provide this method.
(defmethod (basic-arrow-window-mixin :show-lines)
(x y &rest x-y-pairs)
;; First determine the starting point of the line. On
;; subsequent trips through the loop, the last endpoint
;; becomes the next starting point.
(loop for x0 = (send self ’:compute-x x) then x1
for y0 = (send self ’:compute-y y) then y1
;3 "Cddr” down the list created by making all but the
;; first pair of coordinates an &rest argument
for (x1 y1) on x-y-pairs by #’cddr
;; Determine the endpoint of the line
do (setq x1 (send self ’:compute-x x1)
y1 (send self ’:compute-y y1))
;3 Draw the line
(send self ’:draw-line
x0 y0 x1 y1 tv:alu-ior t)))

;;; Determines the x-coordinate of an endpoint of a line.
;3; This is a separate method so that other flavors can shadow
;33 it or add daemons to manipulate the coordinate.
(defmethod (basic-arrow-window-mixin :compute-x) (x)
(fixr x))

;;; Determines the y-coordinate of an endpoint of a Tine.
;35 Assumes that the argument already uses window coordinates,
;33 With origin at top left. This is a separate method so that
;33 other flavors can shadow it or add daemons to manipulate
;33 the coordinate.
(defmethod (basic-arrow-window-mixin :compute-y) (y)

(fixr y))

. Supply the :compute-width-and-height method required by

arrow-parameter-mixin. We use the :inside-size message to
tvisheet, a component of tv:window. We use multiple-value to
set the instance variables width and height.

19

February 1985

Program Development Tools and Techniques

;;; Finds the inside width and height of the window.
;33 Sends self an :INSIDE-SIZE message, and so assumes that
333 TV:SHEET is included somewhere to provide this
;33 method.
(defmethod (basic-arrow-window-mixin
:compute-width-and-height) ()
(multiple-value (width height)
{send self ’:inside-size)))

. Alter the computation of top-y to take account of the screen’s

origin at top left. We can do this in three ways:

Define a new primary method for :compute-top-y to shadow the
method we defined for arrow-parameter-mixin. We would have
to be careful to place basic-arrow-window-mixin before
arrow-parameter-mixin in the list of component flavors for any
flavor we wanted to instantiate.

Define :before and :after daemons for :compute-top-y. The
:before daemon would make top-edge negative and the :after
daemon would make it positive again. (In :daemon method
combination, :before methods for a message run before the
primary method, and :after methods run after the primary
method. If two component flavors have daemons for the same
message, the :before method of the flavor listed earlier in the
component ordering runs before the :before method of the flavor
listed later, and the :after method of the flavor listed earlier runs
after the :after method of the flavor listed later. For more on
method combination: See the section "Method Combination" in
Reference Guide to Symbolics-Lisp.

Define a whopper for :compute-top-y. This would do the same
thing as the two daemons, except that when all the
:compute-top-y methods were combined it would run outside any
daemons. (A whopper wraps the execution of some code around
the execution of a method, running before all :before daemons and
after all :after daemons. For more on whoppers: See the special
form defwhopper in Reference Guide to Symbolics-Lisp.

We define a new primary method in this case because it repeats
relatively little code and makes the operation of the method clearer.
If we used a whopper here, someone might mix in another flavor
with daemons that would unexpectedly run inside our whopper.

120
Program Development Ulilities February 1985

;;3 Calculates y-coordinate of top right point of figure.
;33 Finds vertical length of the figure by dividing the length
;3; of top edge by 0.8. Centers the figure vertically within
:3; the window. Gives the result in window coordinates, with
;33 origin at top left. This method shadows that in
;33 ARROW-PARAMETER-MIXIN.
(defmethod (basic-arrow-window-mixin :compute-top-y) ()
(setq top-y
(fixr (x 0.5 (- height (// top-edge 0.8))))))

5. Calculate the figure’s size and position and redisplay the window at
appropriate times. We have to recompute the figure’s size and
position after the window is initialized and after its size or margins
change. We have to redisplay the figure when the window is
refreshed, but only if the window has no bit-save array or its size
has changed. Before redisplaying, we have to clear the screen if
the window has a bit-save array.

We perform these tasks by defining :after daemons for three
messages that the system can send to a window: :init,
:change-of-size-or-margins, and :refresh. You need daemons
like these for most window-system applications.

| ;3 Calculates size and position of figure after initialization.
| (defmethod (basic-arrow-window-mixin :after :init) (ignore)
| (send self ’:compute-parameters))

;3 Calculates size and position of figure after window change.
(defmethod (basic-arrow-window-mixin
:after :change-of-size-or-margins) (&rest ignore)
(send self ’:compute-parameters))

;3 Draws the figure when necessary after window is refreshed.
(defmethod (basic-arrow-window-mixin :after :refresh)
(&optional type)
;; Draw figure if not restored from a bit-save array ...
(when (or (not tv:restored-bits-p)
;3 ... or size has changed.
(eq type ’:size-changed))
;; If restored from a bit-save array, clear screen first
(when tv:restored-bits-p
(send self ’:clear-screen))
;s Bind xDESTx to self
(let ((xdestx self))
;3 Draw the figure
(draw-arrow-graphic top-edge right-x top-y))))

121

February 1985

Program Development Tools and Techniques

We can now define a flavor of window, basic-arrow-window, built
on our two mixin flavors and on tviwindow. The order of
combination of flavors is important. We need to include
basic-arrow-window-mixin before arrow-parameter-mixin so
that the :compute-top-y method for basic-arrow-window-mixin
shadows that for arrow-parameter-mixin. We must also put
basic-arrow-window-mixin before tv:iwindow so that our :after
daemons will run after any that tv:window or its components
might provide.

(defflavor basic-arrow-window ()
(basic-arrow-window-mixin
arrow-parameter-mixin
tv:window)
(:documentation :combination
“Instantiable flavor providing a basic window for output.
Though this flavor is instantiable, its methods assume that
point coordinaies use the window coordinate system, with
origin at top left. To work with the current calculation
module it needs another mixin to convert LGP to screen
coordinates. In the component flavors, BASIC-ARROW-WINDOW-MIXIN
must come before ARROW-PARAMETER-MIXIN and TV:WINDOW for
shadowing and daemons to work correctly.”))

We can actually make an instance of this flavor. We define no new
methods for it, leaving all methods to component flavors. If we had
a calculation module that used screen coordinates,
basic-arrow-window would be the right flavor to use for screen
output.

5.1.3 Converting Lgp to Screen Coordinates

Because our calculation module uses LGP coordinates, we need
another flavor of window to produce output. We define a flavor,
lgp-window-mixin, to be mixed in with basic-arrow-window.
We need a new instance variable, scale-factor, whose value is the
ratio of LGP to screen pixel densities.

122

Program Development Ulilities February 1985

(defflavor lgp-window-mixin
((scale-factor 2.5))
()
(:required-flavors basic-arrow-window)
(:documentation :mixin
"Converts LGP to screen coordinates and vice versa.
When mixed in with BASIC-ARROW-WINDOW, this flavor allows
window output with a calculation module that uses LGP
coordinates. The instance variable SCALE-FACTOR is the
ratio of LGP to screen pixel density. The methods take
the height and width of the window in screen pixels and
calculate the length of the top edge and the coordinates
of the top right point of the figure in LGP pixels. 1In
drawing lines on the window, the methods convert LGP to
window coordinates. These methods shadow those in
ARROW-PARAMETER-MIXIN and BASIC-ARROW-WINDOW-MIXIN.*))

We next define new primary methods to incorporate the scale factor
into the calculation of top-edge, right-x, and top-y. These
methods shadow those defined for arrow-parameter-mixin and
basic-arrow-window-mixin.

;3; Calculates top edge in LGP pixels from screen proportions.
; Multiplies Tength of smaller dimension, in screen pixels, by
;3 proportion of this dimension to be filled by the figure.

; Multiplies this by 0.8 to find top edge in screen pixels.
; Corrects for higher density of LGP pixels. This method
;33 shadows that of ARROW-PARAMETER-MIXIN.
(defmethod (1gp-window-mixin :compute-top-edge) ()
(setq top-edge
(fixr (x scale-factor 0.8 xfill-proportionx

(min width height)))))

+3; Calculates x-coord of top right point in LGP pixels.
;35 Finds horizontal length of figure in screen pixels by
;33 dividing top edge by 0.8. Centers figure horizontally
;33 in window, correcting for higher density of LGP pixels.
;33 This method shadows that of ARROW-PARAMETER-MIXIN.
(defmethod (1gp-window-mixin :compute-right-x) ()
(setq right-x
(fixr (x 0.5 (+ (% width scale-factor)
(// top-edge 0.8))))))

123

February 1985

Program Development Tools and Techniques

;;; Calculates y-coord of top right point in LGP pixels.
;33 Finds vertical length of figure in screen pixels by
;+3; dividing top edge by 0.8. Centers figure vertically
;3 in window, correcting for higher density of LGP pixels.
;3; This method shadows those of ARROW-PARAMETER-MIXIN and
;33 BASIC-ARROW-WINDOW-MIXIN.
(defmethod (1gp-window-mixin :compute-top-y) ()
(setqg top-y
(fixr (x 0.5 (+ (x height scale-factor)
(// top-edge 0.8))))))

Finally, we need to modify the coordinates used in the :show-lines
method to take account of the scale factor and the difference in
origins for LGP and screen coordinates. We define new methods
for :compute-x and :compute-y to shadow the methods we
defined for basic-arrow-window-mixin.

;33 Converts x-coord of line endpoint from LGP to screen pixels.
;3; Corrects for higher density of LGP pixels. This method shadows
;33 that of BASIC-ARROW-WINDOW-MIXIN.
(defmethod (1gp-window-mixin :compute-x) (x)

(fixr (// x scale-factor)))

;;; Converts y-coord of line endpoint from LGP to screen pixels.
;;: Corrects for higher density of LGP pixels and for screen origin
;33 at top left. This method shadows that of BASIC-ARROW-WINDOW-MIXIN.
(defmethod (1gp-window-mixin :compute-y) (y)
(fixr (- height (// y scale-factor))))

We can now define the flavor we will actually instantiate with
tv:make-window. This flavor, arrow-window, is just a
combination of lgp-window-mixin and basic-arrow-window.

(defflavor arrow-window ()
(1gp-window-mixin basic-arrow-window)

(:documentation :combination

"Instantiable flavor for window output from LGP coordinates.
This flavor has all the features of BASIC-ARROW-WINDOW but
assumes that the calculation module uses LGP coordinates. This
is the flavor to instantiate for window output using the
current calculation module.”))

124
Program Development Ulilities February 1985

5.1.4 Flavers for Lgp Output
We want to be able to direct output to an LGP or an LGP record
file as well as to a window. We define another flavor,
lgp-pixel-mixin, to be mixed in with arrow-parameter-mixin.
We can set an instance variable to the output stream and make it
initable so that we can specify the output stream when we make
an instance of the flavor we build on lgp-pixel-mixin. The output
stream will itself be an instance of a flavor.

(defflavor 1gp-pixel-mixin
(output-stream)
Q)
:initable-instance-variables
(:required-flavors arrow-parameter-mixin)
(:documentation :mixin
"provides methods for arrow graphic output on an LGP stream.
ARROW-PARAMETER-MIXIN is required to calculate the size of the
figure and position it in the center of the page. The method
assumes that coordinates are in LGP pixels. This flavor
should be mixed, along with ARROW-PARAMETER-MIXIN, into an
instantiable flavor for LGP output. When that flavor is
instantiated, the instance variable output-stream should be
initialized."))

The methods for this flavor need to do two things: determine the
width and height of a page and handle :show-lines messages. We
get the width and height from the values of instance variables for

the flavor Igp:basic-lgp-stream. This flavor will be a component

of the flavor we instantiate as the output stream.

;33 Finds width and height of a page for LGP output.
;33 This flavor is required by ARROW-PARAMETER-MIXIN. Finds the
;33 values of two instance variables of LGP:BASIC-LGP-STREAM:
;3; SI:PAGE-WIDTH and SI:PAGE-HEIGHT. Assumes that
;33 LGP:BASIC-LGP-STREAM is included in output stream to prov1de
;;; these instance variables.
(defmethod (1gp-pixel-mixin :compute-width-and-height) ()
(setq width (symeval-in-instance output-stream ’si:page-width)
height (symeval-in-instance output-stream *si:page-height)))

The :show-lines method is similar to that for windows. Instead of
using the :draw-line message to produce lines, we use two
messages to lgp:basic-lgp-stream: :send-command and
:send-coordinates.

125

February 1985

Program Development Tools and Techniques

;13 Receives endpoint coordinates and draws lines on LGP stream.
;;; Arguments are alternating x- and y-coordinates of endpoints of
;3; lines to be drawn. If there are more than two pairs of
;;; coordinates, assumes that the endpoint of one line is the
;3 starting point of the next. Draws a line by sending output
;3; Stream :SEND-COMMAND messages for LGP commands and
;:; :SEND-COORDINATE messages for LGP coordinates. Assumes that
;3; flavor LGP:BASIC-LGP-STREAM is included in output stream to
;33 provide these methods.
(defmethod (1gp-pixel-mixin :show-1lines)
(x0 y0 &rest x-y-pairs)
;: Send command and coordinates to start drawing lines
(send self ’:send-command-and-coordinates #/m x0 y0)
;3 "Cddr” down the list created by making all but the first
;; pair of coordinates an &rest argument
(loop for (x y) on x-y-pairs by #’cddr
;s Send command and coordinates to draw a line
do (send self ’:send-command-and-coordinates #/v x y)))

;5; Sends line-drawing commands to LGP output stream.

;;; :SEND-COMMAND transmits an LGP command. :SEND-COORDINATES

;3; transmits coordinates of an endpoint of a line to be drawn.

;33 Assumes that LGP:BASIC-LGP-STREAM is included in output stream

;3; to provide these methods.

(defmethod (1gp-pixel-mixin :send-command-and-coordinates) (cmd X y)
(send output-stream ’:send-command cmd)
(send output-stream ’:send-coordinates (fixr x) (fixr y)))

We can now define an instantiable flavor for the LGP stream that
combines 1gp-pixel-mixin and arrow-parameter-mixin.

(defflavor 1gp-pixel-stream ()
(1gp-pixel-mixin arrow-parameter-mixin)

(:documentation :combination

"Instantiable flavor for arrow output on LGP stream.
Assumes that the calculation module uses LGP coordinates.
When this flavor is instantiated, the LGP-PIXEL-MIXIN
instance variable OUTPUT-STREAM should be initialized.
The output stream can be directed to an LGP or a file,
but it must include flavor LGP:BASIC-LGP-STREAM for
output to work correctly.”))

126

Program Development Ulilities February 1985

5.1.5 The Top-level Function

We are ready to define a top-level function we can call to produce
the graphic. We start by popping up a choose-variable-values
window. We allow the user to specify screen, LGP, or file output.
We also allow the user to choose values for the number of recursion
levels and the proportion of the page or window to be filled. We let
the user decide whether or not to stripe the arrows.

(defvar xdest-stringx "Screen”
"Destination of program output [Screen, LGP, or File]”)

(defvar xoutput-filex nil
"pathname for LGP-record-file output®)

;;; Top-level function to call to produce arrow graphic.
;;; Pops up a choose-variable-values window to let user specify
;33 output destination, number of recursion levels, proportion
;;; of smaller dimension of page or window to be filled, and
;;; whether or not to stripe figure.
(defun do-arrow ()
+; Pop up a choose-variable-values window
(tv:choose-variable-values
’((xdo-the-stripesx "Stripe the arrows?" :boolean)
(*max-depthx "Number of recursion levels” :number)
(xfill1-proportionx
"Fraction of page or window to be filled” :number)
(xdest-stringx "Output destination”
:choose ("Screen” "LGP" "File"))
(*output-filex "Pathname for file output” :PATHNAME))
;; Make window wide enough to accommodate long pathnames
;3 and error messages
’sextra-width 20.
;; Give user a chance to abort
’:margin-choices (Do It" ("Abort® (signal ’sys:abort)))
*:1abel "Choose Options for Graphic"))

Next we need to take action depending on the output destination
the user has chosen. If the variable *fill-proportion* is zero, we
just return nil no matter what the output destination. If the
destination is "Screen", we make an instance of arrow-window.
We use tv:make-window, which creates a new window each time
we call do-arrow. We could also have defined a resource of arrow
windows (using defwindow-resource), but we might want more
than one selectable arrow window at a time.

If we have more than one arrow window, we want each to retain

127

February 1985

Program Development Tools and Techniques

its own values for number of recursion levels, proportion of the
window to be filled, and presence or absence of striping. We define
three instance variables for basic-arrow-window-mixin and make
them initable. We initialize them when we call tv:make-window
from do-arrow. We change the :after daemons for
basic-arrow-window-mixin to bind the special variables to the
instance-variable values.

(defflavor basic-arrow-window-mixin
(do-stripes max-dep fill-prop)
Q)
:initable-instance-variables
(:required-flavors arrow-parameter-mixin tv:window)
(:default-init-plist
:edges-from ’:mouse :minimum-width 200 :minimum-height 200
:blinker-p nil :expose-p t)
(:documentation :mixin ...))

(defmethod (basic-arrow-window-mixin :after :init) (ignore)
(let ((xfill-proportionx fill-prop))
(send self *:compute-parameters)))

(defmethod (basic-arrow-window-mixin
:after :change-of-size-or-margins) (&rest ignore)
(let ((xfill-proportionx fill-prop))
(send self ’:compute-parameters)))

(defmethod (basic-arrow-window-mixin :after :refresh)
(&optional type)
;; Draw figure if not restored from a bit-save array ...
(when (or (not tv:restored-bits-p)
;3 ... or size has changed.
(eq type ’:size-changed))
;; If restored from a bit-save array, clear screen first
(when tv:restored-bits-p
(send self ’:clear-screen))
;; Bind global variables to self and instance variables
(let ((xdestx self)
(xdo-the-stripesx do-stripes)
(*max-depthx max-dep))
;3 Draw the figure
(draw-arrow-graphic top-edge right-x top-y))))

128

Program Development Ulilities February 1985

(defun do-arrow ()
(tv:choose-variable-values

;; If figure is infinitely small, just return nil
(cond ((= xfill-proportionx 0) nil)
;3 If screen output, make a window
((equal xdest-stringx "screen”)
(tv:make-window ’arrow-window
;; Initialize instance variables to
;; values set by the user
’:do-stripes xdo-the-stripesx
’ :max-dep *max-depthx
>:fill-prop xfill-proportionx))))

If the output destination is "LGP" or "File", we want to make an
instance of lgp-pixel-stream with the instance variable stream
initialized to an appropriate stream. We construct this stream by
calling si:make-hardcopy-stream with an argument that depends
on the output destination. We use with-open-stream to produce
the output on the stream and close it when we finish.

129

February 1985

Program Development Tools and Techniques

(defun do-arrow ()
(tv:choose-variable-values

(cond ((= xfill-proportionx 0) nil)

;3 If screen output, make a window
((equal xdest-stringx "screen")
(tv:make-window ’arrow-window
;; Initialize instance variables to
;; values set by the user
*:do-stripes *do-the-stripesx
’ :max-dep xmax-depthx
*:fill-prop xfill-proportionx))
;3 If LGP or file output, use an appropriate stream
(t (with-open-stream
(stream
;3 This function returns a stream suitable for
;3 LGP output
(si:make-hardcopy-stream
;; Argument is the output device. For LGP,
;; use the default hardcopy device.
(if (equal *dest-stringx "1gp")
si:*default-hardcopy-devicex
;; For file output, use the correct format
;; for the hardcopy device and direct
;; output to the file specified by the user
(1gp:get-1gp-record-file-hardcopy-device
xoutput-filex))))
;; Make an instance of our LGP output flavor
(let ((xdestx
(make-instance ’lgp-pixel-stream
;; Initialize instance
;; variable to output stream
’:output-stream stream)))
;; Position the figure on the page
(send xdestx ’:compute-parameters)
;; Draw the figure, using instance-variable values
;; as arguments
(draw-arrow-graphic (send xdestx ’:top-edge)
{send xdestx ’:right-x)
(send xdestx ’:top-y)))))))

5.1.6 The Arrow Window: Interaction, Processes, and the Mouse

Suppose we want to let the user modify the characteristics of the
graphic for each window. The user might want to change the
presence or absence of striping, the number of recursion levels, or
the proportion of the window to be filled.

130

Program Development Utilities February 1985

One way to install this option is to associate each window with its
own process and let the process run in a loop. If the user clicks
right on the window, we pop up a choose-variable-values window.
When the user is finished, we refresh the window and wait for the
next mouse click.

We can associate a window with a process by including the flavor
tv:process-mixin in basic-arrow-window. When we make the
window (using tv:make-window), we specify a :process init option
whose argument is the name of the top-level function for the
process. When the window is created, a new process is created as
well. When the window is exposed, the process’s top-level function
is called with one argument, the window.

(defflavor basic-arrow-window ()
(basic-arrow-window-mixin
arrow-parameter-mixin
| tv:process-mixin
tv:window)
(:documentation :combination ...))

(defun do-arrow ()
(tv:choose-variable-values

(cond ((= xfill-proportionx 0) nil)
;; If screen output, make a window
((equal xdest-stringx “screen”)
(tv:make-window ’arrow-window
;; Initialize instance variables to
;; values set by the user
’:do-stripes xdo-the-stripesx
’ :max-dep *max-depthx
*:fill-prop *xfill-proportionx
| ;3 Specify top-level function for the
| ;; process associated with the window
| ’:process ’(window-1loop)))

We next want to be able to handle mouse clicks. We include the
flavors tv:any-tyi-mixin and tv:list-mouse-buttons-mixin in
basic-arrow-window. When a window is waiting for input and
the mouse is clicked while over the window, a blip enters the
window’s input buffer. A blip is a list whose form, with
tv:list-mouse-buttons-mixin, is as follows:

131

February 1985 Program Development Tools and Techniques

(:mouse-button encoded-click window x y)

Encoded-click is a fixnum that represents the button clicked.

(defflavor basic-arrow-window ()

(basic-arrow-window-mixin
arrow-parameter-mixin

| tv:any-tyi-mixin

| tv:list-mouse-buttons-mixin
tv:process-mixin
tv:window)

(:documentation :combination ...))

We also want a mouse documentation string to appear when the
mouse is over the window:

(defmethod (basic-arrow-window-mixin
:who-1line-documentation-string) ()
"Provides a mouse documentation line for the window.
The only option is to click right and pop up a
choose-variable-values window of options for changing
the graphic on this window."
"R: Choose-variable-values options for changing figure on this window")

We can now write the process function window-loop. This
function just sends a :main-loop message to the window. We
define :main-loop as a method of basic-arrow-window-mixin.
The method consists of an error-restart-loop so that we can
return to top level if sys:abort or an error is signalled. We send
the window an :any-tyi message. If the user clicks right, we pop
up a choose-variable-values window with the window’s current value
of the variables. When the user exits, we refresh the window and
wait for another click. If the user aborts, sys:abort is signalled,
and we restart the loop.

| ;33 Top-level function for process associated with arrow window.

| ;33 The function is called when the window is created. Argument is
| ;33 the window. The function sends the window a :MAIN-LOOP message.
| ;33 This method should be the actual command loop for the process.

| (defun window-loop (window)

| (send window *:main-loop))

132

Program Development Utilities February 1985

;;; Command 1oop for window associated with a separate process.

:; Consists of an error-restart-loop that handles restarts from errors
;;; and sys:abort. Waits for mouse input. If a right click, pops up a
;;; choose-variable-values window to change characteristics of the

;33 figure. On exit, sets instance variables to the new values and

;;; refreshes the window, then waits for another mouse click. Assumes
;3; blips are lists of the form provided by TV:LIST-MOUSE-BUTTONS-MIXIN.
(defmethod (basic-arrow-window-mixin :main-loop) ()

;; Run forever in a loop. Offer a restart handler if an error
;; or SYS:ABORT is signalled.
(error-restart-loop {(error sys:abort) "Arrow Window Top Level”)
;3 Wait for input
(let ((char (send self ’:any-tyi)))
;: Pop up window if input is a list ...
(when (and (1istp char)
;; ... and a mouse click .
(eq (first char) ’:mouse-button)
;; ... and a single click on the right button.
(eq (second char) #\mouse-r-1))
;; Bind global variables to instance-variable values
(let ((*do-the-stripesx do-stripes)
(xmax-depthx max-dep)
(xfill-proportionx fill-prop))
;; Pop up a choose-variable-values window
(tv:choose-variable-values
*((xdo-the-stripesx "Stripe the arrows?" :boolean)
(xmax-depthx “Number of recursion levels” :number)
(xfill-proportionx
"Fraction of window to be filled" :number))
;3 Make the window wide to provide enough room for error
;3 messages.
’:extra-width 20
;3 Give the user a chance to abort
*:margin-choices ’("Do It" ("Abort"” (signal ’sys:abort)))
’:label “Choose Options For Graphic")
;; Set instance variables to the new values
(setq do-stripes *do-the-stripesx
max-dep *max-depthx
fill-prop xfill-proportionx)
;; Recompute size and position of the figure
(send self ’:compute-parameters)
;; Send :REFRESH message with argument of ’:new-vals to make
;3 sure the figure is redrawn if there is a bit-save array
(send self ’:refresh ’:new-vals))))))

We need to change the :after :refresh method of
basic-arrow-window-mixin so that it redraws the figure when
the values are changed even if the window has a bit-save array.

133

February 1985 Program Development Tools and Techniques

(defmethod (basic-arrow-window-mixin :after :refresh)
(&optional type)
;; Draw figure if not restored from a bit-save array ...
(when (or (not tv:restored-bits-p)

i3 ... or size has changed ...
(eq type ’:size-changed)
] ;s ... or new values for figure parameters.

] (eq type ’:new-vals))
;; If restored from a bit-save array, clear screen first
(when tv:restored-bits-p
(send self ’:clear-screen))
;; Bind global variables to self and instance variables
(let ((xdestx self)
(*do-the-stripesx do-stripes)
(*max-depthx max-dep))
;3 Draw the figure
(draw-arrow-graphic top-edge right-x top-y))))

Note that we can also manipulate the windows we create by using
the [Split Screen] and [Edit Screen] options from the System menu.
We might have more than one arrow window on the screen at the
same time. We might redisplay the figures on these windows at
the same time. In this case, the scheduler might switch between
the arrow window processes, allowing each to run for a time until
all redisplays are complete.

Remember that we took care to bind rather than set the global
variables in the calculation module that hold the state of each
arrow. We want the values of some variables to be different in
each window. Each process maintains its own bindings for
variables. When the scheduler switches processes, bindings in the
old process are undone and saved. They are restored when the old
process resumes. But if we had set the variables, the program
would not have run correctly when the scheduler switched
processes. The new process might have used variable values set in
the old process.

5.1.7 Signalling Conditions
We want to add one more refinement to the output module. In
our choose-variable-values windows, the variable type keywords, such
as :number and :pathname, provide for some error checking when
users choose new values. But two of our numeric variables have
further restrictions: *max-depth* must be a nonnegative integer,
and *fill-proportion* must be a fraction between 0 and 1.

134

Program Development Utilities February 1985

The function tv:choose-variable-values has a :function option
that lets us name a function to be called whenever an item is to be
changed. We can use this function to check the values of our two
variables and signal a condition if the values are bad. We then
print a message on the window and ask the user to proceed by
supplying a new value. ’

We start by defining flavors for the conditions we signal. We define
a general class of error conditions called bad-arrow-variable. We
then define two flavors built on bad-arrow-variable:
bad-arrow-depth for improper values of *max-depth* and
bad-arrow-fill-proportion for improper values of
fill-proportion. For each of these instantiable flavors we define
a :report method and a :proceed method. The :report method
prints a string identifying the condition. The :proceed method
allows the user to proceed from the condition, in this case by
supplying a new value. We could have more than one :proceed
method if we had other ways of proceeding. :proceed methods are
combined using :case method combination.

If we want to create conditions for bad values of other variables in
the future, we can simply define new flavors built on
bad-arrow-variable.

(defflavor bad-arrow-variable () (error)

(:documentation

"Noninstantiable class of bad-variable conditions.
The user might set some variables to impermissible values.
These conditions are to permit checking for bad values
beyond the system’s error checking. Instantiable condition
flavors for specific variables should be built on this
flavor."))

(defflavor bad-arrow-depth () (bad-arrow-variable)
(:documentation
"Proceedable condition: bad value for *xMAX-DEPTHx.
An instantiable condition flavor for impermissible values
of *MAX-DEPTHx, the number of recursion levels in the
figure."))

;33 Prints string on stream to report bad *xMAX-DEPTHx value
(defmethod (bad-arrow-depth :report) (stream)
(format stream "No. of levels was not a ~
nonnegative fixnum."))

135

February 1985

Program Development Tools and Techniques

;33 Proceed type method for supplying new value of *MAX-DEPTHx
(defmethod (bad-arrow-depth :case :proceed :new-depth)
(&optional (dep (prompt-and-read
’ :number
“Supply new value for ~
no. of recursion levels: ")))
“Supply a new value for number of recursion levels."
(values ’:new-depth dep))

(defflavor bad-arrow-fill-proportion () (bad-arrow-variable)
(:documentation
"Proceedable condition: bad value for *FILL-PROPORTIONX.
An instantiable condition flavor for impermissible values of
XFILL-PROPORTIONX, the fraction of the smaller dimension of
the page or window that the figure is to fill."))

;33 Prints string on stream to report bad *FILL-PROPORTIONX value
(defmethod (bad-arrow-fill-proportion :report) (stream)
(format stream "Proportion was not a fraction between ~
0 and 1."))

;33 Proceed type method for new value of XFILL-PROPORTIONx
(defmethod (bad-arrow-fill-proportion :case :proceed
:new-proportion)
(&optional (prop (prompt-and-read
’ :number
"Supply new fraction of bounds ~
be filled: ")))
“Supply a new fraction of page or window to be filled.”
(values ’:new-proportion prop))

Next we write the function, check-item, to be called when a
variable value is changed. The function is called with four
arguments: the choose-variable-values window, the variable, and
the variable’s old and new values. We use condition-bind to bind
a handler for our two conditions. This handler will be called if we
signal the conditions from within the condition-bind. If we do
find a bad variable value, we we expect the call to signal to return
the two values from the :proceed method: the proceed type and
the new variable value. We then check the new value and, if it is
good, set the variable to the new value. Finally, we refresh the
window and return t.

136

Program Development Ulilities February 1985

;3; Called when a value changes in choose-variable-values window.
;;; Arguments are the window, the variable, and its old and new values.
;3; Binds handlers for conditions for impermissible values. If new
;;; value is OK, sets variable to the new value, refreshes window, and
;3; returns t. If value is not OK, signals the appropriate condition.
;3; When SIGNAL returns, presumably with a new variable value, checks
;;; the new value in the same way it checks a new value that comes
;;; from the window.
(defun check-item (cvv-window var old-val new-val)
;: We don’t use the old value. To avoid a compiler complaint,
;3 Jjust evaluate it and ignore it. We could also use IGNORE
;; instead of OLD-VAL in the arglist, but then the arglist
;3 would be less meaningful.
old-val
;; Bind handlers for the conditions we might signal
(condition-bind ((bad-arrow-depth ’bad-arrow-var-handler)
(bad-arrow-fill-proportion
’bad-arrow-var-handler))
(when (eq var ’*max-depthx)
;3 *MAX-DEPTH* must be nonnegative fixnum
(loop until (and (fixp new-val) (2 new-val 0))
;3 If it’s not, bind QUERY-IO to the window and
;; signal a condition. SIGNAL should return
;; two values, the proceed type and the new
;3 value from the proceed method. Ignore the
;; proceed type and set NEW-VAL to the new
;3 value.
do (let ((query-io cvv-window))
(multiple-value (nil new-val)
(signal ’bad-arrow-depth)))))
(when (eq var ’xfill-proportionx)
;3 XFILL-PROPORTIONXx must be between 0 and 1
(Toop until (and (2 new-val 0) (< new-val 1))
;3 If it’s not, bind QUERY-IO to the window and
;; signal a condition. SIGNAL should return
;; two values, the proceed type and the new
; value from the proceed method. Ignore the
;; proceed type and set NEW-VAL to the new
;3 value.
do (let ((query-io cvv-window))
(multiple-value (nil new-val)
(signal ’bad-arrow-fill-precportion)))))
;; Variable value is now OK. Set variable to the new value.
;; Note that we DO want to evaluate VAR.
(set var new-val)
;; Refresh the window
(send cvv-window ’:refresh)
;3 Return t

137

February 1985 Program Development Tools and Techniques

! t))

Next we need to add the :function option to our calls to
tv:choose-variable-values in the function do-arrows and the
:main-loop method of basic-arrow-window-mixin:

(defun do-arrow ()
;3 Pop up a choose-variable-values window
(tv:choose-variable-values
’((xdo-the-stripesx "Stripe the arrows?" :boolean)
(*max-depthx “Number of recursion levels" :number)
(xfill-proportionx
"Fraction of page or window to be filled" :number)
(*dest-stringx "Output destination”
:choose ("Screen” "LGP" "File"))
(xoutput-filex "Pathname for file output” :pathname))
;; Make window wide enough to accommodate long pathnames
;3 and error messages
’:extra-width 20.
| ;3 Call this function when a value is changed
| >:function ’check-item
;; Give user a chance to abort
’:margin-choices *("Do It"” ("Abort” (signal ’sys:abort)))
*:label "Choose Options for Graphic")

138

Program Development Utilities February 1985

(defmethod (basic-arrow-window-mixin :main-loop) ()
;3 Run forever in a loop. Offer a restart handler if an error
;3 or sys:abort is signalled.
(error-restart-loop ((error sys:abort) "Arrow Window Top Level")
;; Wait for input
(let ((char (send self *:any-tyi)))
;3 Pop up window if input is a list ...
(whern (and (1istp char)
;3 ... and a mouse click ...
(eq (first char) ’:mouse-button)
;3 ... and a single click on the right button.
(eq (second char) #\mouse-r-1))
;; Bind global variables to instance-variable values
(let ((xdo-the-stripesx do-stripes)
(xmax-depthx max-dep)
(xfill-proportionx fill-prop))
;3 Pop up a choose-variable-values window
(tv:choose-variable-values
’((*do-the-stripesx "Stripe the arrows?" :boolean)
(xmax-depthx "Number of recursion levels” :number)
(xfill-proportionx
"Fraction of window to be filled” :number))
;; Make the window wide to provide enough room for error
;; messages.
’:extra-width 20
| ;s Call a function to check for errors when values change
| *:function ’check-item
;: Give the user a chance to abort
*:margin-choices *("Do It" ("Abort* (signal ’sys:abort)))
*:1abel "Choose Options for Graphic")
;; Set instance variables to the new values
(setq do-stripes xdo-the-stripesx
max-dep *max-depthx
fill-prop *fill-proportionx)
;3 Recompute size and position of the figure
(send self ’:compute-parameters)
;3 Send :REFRESH message with argument of ’:new-vals to make
;; sure the figure is redrawn if there is a bit-save array
(send self ’:refresh ’:new-vals))))))

Finally, we need to write a handler for the two conditions. When a
condition is signalled, the handler is called with one argument, the
object of the flavor of condition that is signalled. In check-item,
we call signal with query-io bound to the choose-variable-values
window. The handler checks to be sure there is a proceed type for
the object. If so, the handler turns on a blinker on the window
and sends the :report and :proceed messages to the condition

139

February 1985

Program Development Tools and Techniques

object. Finally, it turns off the blinker and passes back to its caller
the two values that the :proceed method returns.

Actually, the handler we define doesn’t depend on the binding of
query-io to the window. If query-io is not bound to a window —
that is, to an instance of a flavor built on tv:sheet — the handler
won’t try to turn on a blinker. If query-io is bound to a window,
the handler first looks (using tv:sheet-following-blinker) for an
existing blinker that follows the cursor. If it doesn’t find one, it
makes a new blinker (using tv:make-blinker). It encloses the
handling operation in an unwind-protect to be sure that the
blinker is turned off in case of a nonlocal exit.

140

Program Development Ulilities February 1985

;;; Handler for bad value of *MAX-DEPTHx or XFILL-PROPORTIONx.
;3: Argument is the condition object created by SIGNAL. Uses QUERY-IO
+3; stream to report condition. Sends the condition object a :PROCEED
;3; message and passes back the values it returns.
(defun bad-arrow-var-handler (cond-obj &aux bl)
;; Find out whether this object has the right proceed type.
;3 If not, return nil.
(if (send cond-obj ’:proceed-type-p
(cond ((typep cond-obj ’bad-arrow-depth) ’:new-depth)
((typep cond-obj ’bad-arrow-fill-proportion)
’ :new-proportion)))
;; Enclose the handling operation in an UNWIND-PROTECT so that
;; if we use a blinker we are sure to turn it off
(unwind-protect
(progn
;; Use a blinker if the QUERY-IO stream is a window
(setq bl (if (typep query-io ’tv:sheet)
;3 If a cursor-following blinker exists, use it
(or (tv:sheet-following-blinker query-io)
;; Otherwise, make a new blinker
(tv:make-blinker query-io
*tv:rectangular-blinker
*:follow-p t))))
;; If a blinker, make it blink
(if bl (send bl ’:set-visibility *:blink))
;; Alert the user
(tv:beep)
;; Send a report, presumably describing the condition
(send cond-obj ’:report query-io)
;3 Send object a :PROCEED message and return the values
;; that the method returns
(send cond-obj ’:proceed
(cond ((typep cond-obj ’bad-arrow-depth) ’:new-depth)
((typep cond-obj ’'bad-arrow-fill-proportion)
’ :new-proportion))))
;3 If a blinker, turn it off
(if bl (send bl ’:set-visibility nil)))))

After we have defined all the flavors and methods for the output
module, we insert a compile-flavor-methods form in the file.
Without this macro, combined methods are compiled and flavor data
structures generated when we make the first instance of a flavor —
that is, at run time. compile-flavor-methods speeds run-time
operation by causing combined methods to be compiled at compile
time and data structures to be generated at load time. It is useful
only for flavors that will be instantiated, not for flavors that are
only components of instantiated flavors.

141

February 1985 Program Development Tools and Techniques

] (compile-flavor-methods arrow-window lgp-pixel-stream
| bad-arrow-depth bad-arrow-fill-proportion)

5.2 Programming Aids for Flavors and Windows

Some editor commands and Lisp functions provide information about flavors. You
can find out about component flavors, methods, instance variables, init keywords,
and documentation. Using the Inspector, you can examine instance variables and
methods for instances of flavors: See the section "The Inspector: Program
Development Tools and Techniques", page 104. If a flavor has gettable instance
variables, you can obtain their values by sending messages to instances of the flavor.

These commands and functions are useful for finding information about windows as
well. Because windows are instances of flavors, you can retrieve characteristics that
are stored in gettable instance variables by sending messages to the windows. See
the section "Using the Window System" in Programming the User Interface. If a
window is exposed, you can examine and alter some characteristics by clicking on the
[Attributes] item in the System menu. Clicking on [Attributes] pops up a choose-
variable-values window for such characteristics as font, label, margins, and vertical
spacing between lines.

As with other definitions, Edit Definition (m-.) prepares to edit definitions of flavors
and methods. For a description of how to use this command to edit method
definitions: See the section "Methods: Program Development Tools and Techniques”,
page 142.

5.21 General Information on Flavors
The facilities that display general information about a flavor are
Describe Flavor (m-X) and describe-flavor. These display
somewhat different descriptions of a flavor.

A useful predicate for instances of flavors is typep. Given an
instance and a flavor name, typep returns t if the instance
includes the flavor as a component.

Example

In handling bad values for the variables *max-depth* and
fill-proportion, we want to be sure that query-io is bound to a
window before turning on a blinker. We find out whether the
object bound to query-io is built on tv:sheet by using typep:

(typep query-io ’tv:sheet)

142

Program Development Ultilities February 1985
Reference
Describe Flavor (m-x) Displays a description of a flavor

that includes the names of
instance variables and component
flavors and any documentation
added by the :documentation
option for defflavor. Also
displays init keywords and
inherited methods and instance
variables. Names of flavors and
methods in the display are mouse
sensitive.

(describe-flavor flavor-name) Prints a description of a flavor
that includes the names of
instance variables and component
flavors and any documentation
added by the :documentation
option for defflavor.

(typep arg type) When arg is an instance of a
flavor and ¢ype is a flavor name,
returns t if the instance includes
the flavor as a component or nil
if it does not. If type is omitted,
returns a symbol representing the
flavor of the instance.

5.2.2 Methods

Four Zmacs commands display information about the methods that
handle messages to instances of flavors. For instances of flavors
built on si:vanilla-flavor — that is, for nearly all flavors — you
can send messages to find out which messages the object handles
and whether or not it handles a specific message.

You can use the Zmacs command Edit Definition (m-.) to edit the
definition of a method. Specify a method by typing a
representation of its function spec. This is a list of the following
form:

(:method flavor type message)

When typing this representation for Edit Definition (m-.), type is
optional. If the method has a type, Zmacs will try to find the
definition and ask you whether or not that definition is the one
you want.

143

February 1985 Program Development Tools and Techniques

You might know the name of a method but not the name of its
flavor. Use List Methods (m-%) to find methods for all flavors that
handle a message. You can click on one of the method names
displayed to edit its definition.

Example
We want to edit the definition of the :main-loop method of
basic-arrow-window-mixin. We use Edit Definition (m-.) and

type:

(:method basic-arrow-window-mixin :main-loop)

Example

We want to find out which methods handle :show-lines messages
and how the methods handle the messages. List Methods (m-X)
displays the following methods:

Methods for :SHOW-LINES
(:METHOD BASIC-ARROW-WINDOW-MIXIN :SHOW-LINES)
(:METHOD LGP-PIXEL-MIXIN :SHOW-LINES)

We can click on one of the method names or press c-. to edit the
definition. We also could have found the source code directly by
using Edit Methods (m-X).

Example

We want to find out which methods are called when the system
sends an :init message to arrow-window. List Combined
Methods (m-X) prompts for message and flavor names and displays
the following methods, in the order in which they are called:

Combined method for :INIT message to ARROW-WINDOW flavor
:METHOD TV:SHEET :WRAPPER :INIT)

:METHOD TV:STREAM-MIXIN :BEFORE :INIT)

:METHOD TV:BORDERS-MIXIN :BEFORE :INIT)

:METHOD TV:ESSENTIAL-LABEL-MIXIN :BEFORE :INIT)
:METHOD TV:ESSENTIAL-WINDOW :BEFORE :INIT)
:METHOD TV:SHEET :INIT)

:METHOD TV:ESSENTIAL-SET-EDGES :AFTER :INIT)
:METHOD TV:LABEL-MIXIN :AFTER :INIT)

:METHOD TV:PROCESS-MIXIN :AFTER :INIT)

:METHOD BASIC-ARROW-WINDOW-MIXIN :AFTER :INIT)

e e ke e el e e R

144

Program Development Ulilities February 1985
Reference
List Methods (m-X) Lists methods for all flavors that

handle a specified message. Press
c-. to edit the definitions of the
methods listed.

Edit Methods (m-X) Prepares to edit definitions of
methods for all flavors that
handle a specified message. Press
c-. to edit subsequent definitions.

List Combined Methods (m-X) Lists all the methods that would
be called if a specified message
were sent to an instance of a
specified flavor. Press e-. to edit
the definitions of the methods
listed.

Edit Combined Methods (m-x) Prepares to edit definitions of
methods that would be called if a
specified message were sent to an
instance of a specified flavor.
Press c-. to edit subsequent
definitions.

(send instarce »which-operations)
Returns a list of messages that
instance can handle.

(send instance ’:operation-handled-p message)
Returns t if instance has a
handler for message or nil if it
does not.

(get-handler-for object message) Returns the method that handles
message to object, or nil if object
has no handler for message.

5.2.3 Init Keywords
si:flavor-allowed-init-keywords retrieves the init keywords
allowed for a flavor.

Example
We want to find the allowed init keywords for 1gp-pixel-stream.
si:flavor-allowed-init-keywords returns the following list:

(:DO-STRIPES :FILL-PROP :MAX-DEP :OUTPUT-STREAM)

145

February 1985 Program Development Tools and Techniques

These are all keywords for initable instance variables, the first three
from arrow-parameter-mixin and the last from lgp-pixel-mixin.

Reference

(si:flavor-allowed-init-keywords flavor-name)
Returns a list of any init
keywords a flavor can take.

146

Program Development Ulilities February 1985

147

February 1985 Program Development Tools and Technigues

6. Calculation Module for the Sample Program

The program used as an example in this document draws the recursive arrow
graphic on the document’s cover. This section contains Lisp code that calculates
coordinates for the endpoints of the lines that compose the figure. The code
produces output by sending messages to instances of flavors defined in another file.
For the code for the flavors and methods that mediate between the program and the
system output operations: See the section "Output Module for the Sample
Program", page 165. For a reproduction of the LGP graphic the program produces:
See the section "Graphic Output of the Sample Program", page 185.

:3; -%- Mode: LISP; Package: (GRAPHICS GLOBAL 1000); Base: 10 -x-
;33 Copyright (c) 1983 Symbolics, Inc.

#11

This file contains the calculation module for a program that
reproduces the recursive arrow graphic printed on the covers
of most Symbolics documents. The module calculates the
coordinates of the endpoints of line segments to be drawn.
It transmits these coordinates to a separate output module,
which contains the code needed to produce the figure on an
appropriate output device.

We use paper coordinates, origin at bottom left.

Each arrow in the figure can be seen as inscribed in a square
whose apex is at (apex-x, apex-y). Each arrow has a head and
a shaft. Top-edge is the top edge of each arrow, one of the
sides of the arrowhead. There are two classes of arrow in
the figure: The small arrows are the general case, and the
large, outer arrow is unique. The differences are the
structures of the shafts and the recursive appearance of

the small arrows.

The module uses special variables to store information about
the current arrow, including the length of the top edge and
the coordinates of the vertexes.

The module first calculates coordinates for the vertexes of
the large, outer arrow. If the arrows are to be striped, it
determines the endpoints of the lines that make up the large
arrow’s stripes, first in the head and then in the shaft.

148

Program Development Ulilities

The module then recursively calculates coordinates for each of
the small arrows inside the figure. It outlines and stripes
one arrow at a time. For each arrow, the module first
calculates the coordinates of the vertexes of the head. If the
arrows are to be striped, it then determines the coordinates of
the endpoints of the lines that make up the current arrow’s
stripes, first in the head and then in the shaft.

The output module initiates the calculation module by calling
DRAW-ARROW-GRAPHIC with three arguments: the length of the
figure’s top edge and the coordinates of the top right point
(p0 in the large arrow). This module transmits coordinates to
the output module by sending :SHOW-LINES messages to instances
of output flavors. The arguments to :SHOW-LINES are the
coordinates of the endpoints of lines to be drawn. The current

instance of the output flavor is the value of the special variable

*DESTx.

(apex-x, apex-y)

February 1985

149

February 1985 Program Development Tools and Techniques

Points 3 and 4 are obscured, except in the case of the big arrow.
1 1#

;33 Following are declarations for special variables and constants

(defconst xdix 0.15
"Proportion of distance filled in between upper right stripes”)

(defconst xd2x 0.75
“Proportion of distance filled in between lower left stripes”)

(defconst xstripe-distancex 20
"Horizontal distance in pixels between stripes of large arrow”)

150

Program Development Ulilities

(defconst xmax-depthx 7
"Number of levels of recursion”)

(defconst xdo-the-stripesx t
"If T, permits striping”)

(defconst *destx nil
"Object to which output is sent”)

(defvar xdepthx 0
“Current level of recursion")

(defvar xtop-edgex nil
"Length of the top edge of the arrow")

(defvar xtop-edge-2x nil
"Half the length of the top edge of the arrow")

(defvar xtop-edge-4x nil
"One-fourth the length of the top edge of the arrow")

(defvar xx2x nil
"X-coord of projection of lower left stripe on top edge”)

(defvar xstripe-dx nil
"Horizontal distance in pixels between stripes"”)

(defvar xp0xx nil
"X-coordinate of the tip of the arrow")

(defvar xpOyx nil
"Y-coordinate of the tip of the arrow”)

(defvar xpixx nil
"X-coordinate of point p1 in the arrow")

(defvar *plyx nil
“"Y-coordinate of point p1 in the arrow”)

(defvar *xp2xx nil
"X-coordinate of point p2 in the arrow”)

(defvar xp2yx nil
"Y-coordinate of point p2 in the arrow")

(defvar xp3xx* nil
“X-coordinate of point p3 in the arrow”)

February 1985

151

February 1985 Program Development Tools and Techniques

(defvar xp3yx nil
“Y-coordinate of point p3 in the arrow")

(defvar xp4xx nil
"X-coordinate of point p4 in the arrow")

(defvar xpdyx nil
"Y-coordinate of point p4 in the arrow")

(defvar xp5xx nil
"X-coordinate of point p5 in the arrow")

(defvar *p5yx nil
"Y-coordinate of point p5 in the arrow")

(defvar xpéxx nil
"X-coordinate of point p6 in the arrow")

(defvar xpéyx nil
"Y-coordinate of point p6 in the arrow")

;3; Following are the controlling functions for this module

;33 Function controlling the calculation module.
;33 Controls the calculation of the coordinates of the endpoints of the
;3; lines that make up the figure. The three arguments are the length of
;3; the top edge and the coordinates of the top right point of the large
;35 arrow. DRAW-ARROW-GRAPHIC calls DRAW-BIG-ARROW to draw the large arrow
;33 and then calls DO-ARROWS to draw the smaller ones.
(defun draw-arrow-graphic (xtop-edgex xpOx* *pOyx)
;; Bind global variables
(let ((xtop-edge-2x (// xtop-edgex 2))
(xtop-edge-4x (// xtop-edgex 4))
;3 Compute horizontal distance between stripes in the large
;; arrow, assuming 64 stripes in the large arrowhead.
(xstripe-distancex* (// xtop-edgex 64)))
{draw-big-arrow) ;Draw large arrow
;; Length of the top-edge for the first small arrow is half the
;; length for the large arrow. Bind new coordinates for the top
;3 right point of the small arrow.
(let ((xtop-edgex xtop-edge-2x)
(xp0Oxx (- *pOxx xtop-edge-2x))
(xp0y* (- *xpOyx xtop-edge-2x))
(xdepthx 0))
(do-arrows)))) ;Draw small arrows

152

Program Development Utilities February 1985

;3; Recursive function controlling drawing of the small arrows.
;33 If below the maximum recursion level, draws a small arrow. Binds
;+3: new values for depth, top edge, and coordinates of top right point,
+3; and calls self recursively to draw a left-hand child arrow. Binds
;3; special variables again and calls self to draw a right-hand child
s aArrow.
(defun do-arrows ()
;; Don’t exceed maximum recursion level
(when (< xdepthx xmax-depthx)
;; Bind values for half and one-fourth of top edge
(let ((xtop-edge-2x (// xtop-edgex 2))
(xtop-edge-4x (// xtop-edgex 4)))
(draw-arrow) ;Draw a small arrow
;3 Increment depth. Divide top edge in half. Bind new
;3 coordinates for top right point of next arrow.
(let ((xdepthx (1+ xdepthx))
(*xtop-edgex xtop-edge-2x)
(xpOxx (+ xtop-edge-4x (- xp0x* xtop-edgex)))
(xpOyx (- *pOyx xtop-edge-4x)))
;s Draw a left-hand child arrow
(do-arrows))
;3 Increment depth. Divide top edge in half. Bind new
;3 coordinates for top right point of next arrow.
(let ((*depthx (1+ xdepthx))
(xtop-edgex xtop-edge-2x)
(xpOxx (- xp0xx xtop-edge-4x))
(xpOy* (+ xtop-edge-4x (- *pOyx xtop-edgex))))
;3 Draw a right-hand child arrow
(do-arrows)))))

;3; The following functions are common to the large and small arrows

;33 Calculates coordinates of points visible in large and small arrows.
;33 The four\boints that bound the head of each arrow are the only ones
;33 visible in the small arrows. Points 3 and 4 -- the base of the arrow
;33 -- are obscured, except in the large arrow. We calculate these in
;33 compute-arrow-shaft-points.

(defun compute-arrowhead-points ()

(letx ((pix (- xpOxx xtop-edgex)) ;X-coord, point 1
(ply xpOyx) ;Y-coord, point 1
(p2x (+ plx xtop-edge-4x)) ;X-coord, point 2
(p2y (- xpOyx xtop-edge-4x)) ;Y-coord, point 2
(p6x *pOxx) ;X-coord, point 6
(p6y (- xpOyx xtop-edgex)) ;Y-coord, point 6
(p5x (- xpOxx xtop-edge-4x)) ;X-coord, point 5
(pSy (+ p6y xtop-edge-4x))) ;Y-coord, point 5

(values p1x ply p2x p2y p5x pSy p6x p6y)))

183

February 1985 Program Development Tools and Techniques

oo
3

; Calculates horizontal distance between stripes.

; Distance is a fraction of the distance between stripes for the
; large arrow. The divisor depends on the level of recursion.

; Distance divides length of top edge evenly when possible to

maintain continuity between head and shaft of arrow.

(defun compute-stripe-d ()
;; Distance should be at least 3 pixels so that there is some
;; white space between lines.
(if (< xstripe-distancex 3) 3

o e
29

;3 First find a fraction of *STRIPE-DISTANCEXx that depends
;3 on recursion level
(loop for dist = (fixr (// xstripe-distancex
(selectq *depthx
(0 2)
(14)
(2 2)
(3 1.5)
(4 1.5)
(otherwise 2))))
;3 Increment if it doesn’t divide XTOP-EDGEx evenly
then (1+ dist)
when (= 0 (\ *xtop-edgex dist))
;; Stop when no remainder. Don’t return a value
;3 less than 3.
do (return (if (< dist 3) 3 dist)))))

; Calculates the number of lines that compose each stripe.

; Calls COMPUTE-DENS to calculate the proportion of distance

; between stripes to be filled, then multiplies by the actual
; distance between stripes. Makes sure that there is at least
; one line and that there aren’t too many lines to leave some

white space.

(defun compute-nlines (x)
;3 Call COMPUTE-DENS and multiply result by *xSTRIPE-Dx
(let ((nl1 (fix (x *stripe-dx (compute-dens x)))))

;; Supply at least one line

(cond ((< nl1 1) 1)
;3 But leave some white space between lines
((2 nl (- *stripe-dx 1)) (- xstripe-dx 2))
(t n1))))

154

Program Development Ulilities February 1985

;; Calculates proportion of distance filled in between each stripe.
; The argument is the x-coordinate of the projection of the current
; stripe onto the line formed by the top edge. Determines where the
; projection of the current stripe is on this line in relation to the
;;; distance from first to last stripes in the arrow. Multiplies this
;;; fraction by the difference between densities of first and last
;3: stripes. Finally, adds the density of the first stripe.
(defun compute-dens (x)

(+ xd1x (x (- *xd2x xd1x)
(/7 (- x xp0xx) (float (- *xx2x xp0xx))))))

we ws we
-
-

e we we we

;; The following two functions stripe the arrowheads. The
;;; heads of the large and small arrows are identical, so we
;; use the same functions to stripe both.

;33 Function controlling striping of the head of each arrow.
;33 Determines coordinates of starting and ending points for each
;53 stripe. Calls COMPUTE-NLINES to determine number of lines for
;33 the stripe. Calls DRAW-ARROWHEAD-LINES to draw the lines that
;53 make up each stripe.
(defun stripe-arrowhead ()
;3 Find x-coord of top of last stripe to be drawn
(loop with last-x = (- *pOxx xtop-edgex)
;3 Find starting x-coord for each stripe, decrementing
;3 by distance between stripes. Stop at last x-coord.
for start-x from *xpOxx by *stripe-dx above last-x
;; Find ending y-coord for each stripe, decrementing by
;; distance between stripes.
for end-y downfrom *pOyx by xstripe-dx
;3 Find number of lines in the stripe
for nlines = (compute-nlines start-x)
;; Draw the lines that make up the stripe
do (draw-arrowhead-lines nlines start-x end-y last-x)))

155

February 1985 Program Development Tools and Techniques

;;; Draws the lines that make up each stripe in an arrowhead.
;3; Arguments are number of lines in the stripe, starting x-coord
;;; and ending y-coord of first line, and x-coord of top of last
;33 stripe to be drawn. Decrements by one pixel when drawing each
;;; line.
(defun draw-arrowhead-lines (nlines start-x end-y last-x)
;3 Set up a counter
(loop for i from 0 below nlines
;3 Find starting x-coord, subtracting counter from first
;3 x-coord
for first-x = (- start-x i)
;; Make sure we don’t go past the end of the arrowhead
while (< last-x first-x)
;; Draw a line
do (send *destx ’:show-lines
first-x xp0yx xp0Oxx (- end-y i))))

;33 The following functions draw and stripe the large arrow

:3; Function controlling drawing of the large arrow.
;3; Calls functions to find coordinates of vertexes of the arrow.
;33 Outlines the arrow. Binds distance between stripes and x-coord
;3; of projection of last stripe onto top edge. Finally, stripes
;;; head and shaft of arrow when required.
(defun draw-big-arrow ()
;; Determine coordinates of arrowhead vertexes
(multiple-value-bind
(xpIxx *plyx *p2x* *p2y* *p5Sx*x *pSy*x Xp6xx Xp6yx*)
(compute-arrowhead-points)
;; Determine coordinates of shaft vertexes
(multiple-value-bind
(*p3x* *p3yx *plhxx xplyx)
(compute-arrow-shaft-points)
(draw-big-outline) ;Outline arrow
(when xdo-the-stripesx
;; Bind distance between stripes and x-coord of projection
;; of last stripe onto top edge
(let ((*stripe-d*x xstripe-distancex)
(xx2x (- xpOxx xtop-edgex xtop-edgex)))
(stripe-arrowhead) ;Stripe head
(stripe-big-arrow-shaft)))))) ;Stripe shaft

156

Program Development Utilities February 1985

;3; Calculates coordinates for vertexes of shaft of large arrow.
;;; These points are obscured and not drawn for the small arrows.
(defun compute-arrow-shaft-points ()

(values (- xpixx xtop-edge-4x) ;X-coord of point 3
(- xp2yx xtop-edge-2x) ;Y-coord of point 3
Xp2x% ;X-coord of point 4
(- xp2y* xtop-edgex))) ;Y-coord of point 4

;35 Draws the outline of the large arrow.
(defun draw-big-outline ()
(send *destx ’:show-lines
Xp0x* XxpOyx XplIxx Xplyk Xp2xX Xp2yX Xp3x* *xp3y*¥
Xphxx xplyx Xp5xx xp5S5yx Xp6x* *p6y* XxpOxx XpOyx))

;3; The next seven functions stripe the shaft of the large arrow.
;33 First is a controlling function, then three functions to stripe
;33 the left side and three more to stripe the right.

;33 Function controlling striping of the shaft of the large arrow.
;33 Just calls STRIPE-BIG-ARROW-SHAFT-LEFT to stripe the left side
;33 and STRIPE-BIG-ARROW-SHAFT-RIGHT to stripe the right side.
(defun stripe-big-arrow-shaft ()

(stripe-big-arrow-shaft-left)

(stripe-big-arrow-shaft-right))

February 1985 Program Development Tools and Techniques

;33 Function controlling striping of left side of big arrow’s shaft.
;3; Iterates over the triangles that make up the shaft. Determines
;3; coordinates of the apex and bottom right point of each triangle.
;33 Calls DRAW-BIG-ARROW-SHAFT-STRIPES-LEFT to stripe each triangle.
(defun stripe-big-arrow-shaft-left ()
;; Set up a counter for depth. Don’t exceed maximum recursion
;3 level.
(loop for shaft-depth from 0 below *max-depthx
;3 Find current top edge and its fractions
for top-edge = *top-edgex then (// top-edge 2)
for top-edge-2 = (// top-edge 2)
for top-edge-4 = (// top-edge 4)
;; Find coordinates of apex of triangle
for apex-x = *p2xx then (- apex-x top-edge-2)
for apex-y = *p2yx then (- apex-y top-edge-2)
;3 Find x-coord of bottom right vertex
for right-x = (+ apex-x top-edge-4)
;3 Find y-coord of bottom edge of triangle
for bottom-y = (- apex-y top-edge-4)
;s Find the x-coord of the projection of the first
;; stripe onto top edge
for xoff = (- *pOxx xtop-edgex) then (- xoff top-edge)
;3 Stripe each triangle
do (draw-big-arrow-shaft-stripes-left
top-edge-4 apex-x apex-y right-x bottom-y xoff)))

158

Program Development Utilities

; Stripes each triangle in left side of big arrow’s shaft.

; Arguments are one-fourth current top edge, x- and y-coords

; of apex of triangle, x- and y-coords of bottom right vertex,
; and x-coord of projection of first stripe onto top edge.

;;; Determines coordinates of starting and ending points for

IR
9

; each stripe. Finds number of lines in the stripe. Calls
; DRAW-BIG-ARROW-SHAFT-LINES-LEFT to draw the lines that
make up each stripe.

(defun draw-big-arrow-shaft-stripes-left

(top-edge-4 apex-x apex-y right-x bottom-y xoff)

(loop with half-distance = (// *stripe-distancex 2)

;; Find x-coord of last stripe in triangle
with last-x = (- apex-x top-edge-4)
;3 Find x-coord of top of each stripe, decrementing
;; from the apex by HALF the horizontal distance
;; between stripes. Stop at last stripe.
for start-x from apex-x by half-distance above last-x
;3 Find y-coord of top of stripe
for start-y downfrom apex-y by half-distance
;3 Find x-coord of endpoint of stripe
for end-x downfrom right-x by *stripe-distancex
;3 Find number of lines in the stripe
for nlines = (compute-nlines (- xoff (- right-x end-x)))
;; Draw a stripe
do (draw-big-arrow-shaft-lines-left
nlines start-x start-y end-x bottom-y last-x)))

February 1985

159

February 1985 Program Development Tools and Techniques

;3; Draws the lines for a stripe on left side of big arrow’s shaft.
;33 Arguments are number of lines in the stripe, coords of starting
;;; and ending points for first line, and x-coord of last stripe to
;33 be drawn.
(defun draw-big-arrow-shaft-lines-left
(nlines start-x start-y end-x end-y last-x)
;; Set up two counters -- we need to draw two lines at once
(loop for i from 0
for i2 from 0 by 2
+; Find x-coord of top of first line in stripe
for first-x = (- start-x i)
;; Don’t exceed number of lines in stripe
while (< i2 nlines)
;; Don’t go past the end of the triangle
while (< last-x first-x)
;3 Draw a line
do (send xdestx ’:show-lines first-x (- start-y i)
(- end-x i2) end-y)
;; Draw a second line. The two lines are a refinement
;s to stagger the endpoints of the lines so the diagonal
;; edge looks neat.
(send xdestx ’:show-lines first-x (- start-y i 1)
(- end-x i2 1) end-y)))

;33 Function controlling striping of right side of big arrow’s shaft.
;;; Iterates over the triangles that make up the shaft. Determines
;3 coordinates of the top point of each triangle. Calls
;3 ; DRAW-BIG-ARROW-SHAFT-STRIPES-RIGHT to stripe each triangle.
(defun stripe-big-arrow-shaft-right ()
;; Set up a counter for depth. Don’t exceed maximum recursion
;3 level.
(loop for shaft-depth from 0 below xmax-depthx
;; Find new top edge and its fractions
for top-edge = xtop-edgex then (// top-edge 2)
for top-edge-2 = (// top-edge 2)
for top-edge-4 = (// top-edge 4)
;3 Find coords of top point of triangle
for start-x = (+ *p2xx top-edge-4)
for top-y = (- *p2y* xtop-edge-4x)
then (- top-y top-edge-2 top-edge-4)
;3 Find x-coord of projection of first stripe onto
;; top-edge
for xoff = (- xpOxx xtop-edgex) then (- xoff top-edge)
;3 Stripe the triangle
do (draw-big-arrow-shaft-stripes-right
top-edge-2 top-edge-4 start-x top-y xoff)))

160

Program Development Ulilities

;33 Stripes each triangle in right side of big arrow’s shaft.
;;; Arguments are one-half and one-fourth of current top edge,

;33 coords of top point of the triangle, and x-coord of projection

;3; of first stripe onto top edge. Determines coordinates of

;33 starting and ending points for each stripe. Finds number of

;33 lines that make up the stripe. Calls
::; DRAW-BIG-ARROW-SHAFT-LINES-RIGHT to draw a stripe.

(defun draw-big-arrow-shaft-stripes-right

(top-edge-2 top-edge-4 start-x top-y xoff)

(Toop with half-distance = (// *stripe-distancex 2)

;3 Find y-coord of last stripe in triangle
with last-y = (- top-y top-edge-2)
;3 Find y-coord of starting point of stripe. Don’t go
;3 past the end of the triangle.
for start-y from top-y by xstripe-distancex above last-y
;3 Find coords of ending point of the stripe, decrementing
;3 by HALF the horizontal distance between stripes
for end-x downfrom (+ start-x top-edge-4) by half-distance
for end-y downfrom (- top-y top-edge-4) by half-distance
;3 Find number of lines that make up the stripe
for nlines = (compute-nlines (- xoff (- top-y start-y)))
;; Draw a stripe
do (draw-big-arrow-shaft-lines-right

nlines start-x start-y end-x end-y last-y)))

;3; Draws the lines for a stripe on right side of big arrow’s shaft.
;33 Arguments are number of lines in the stripe, coordinates of starting
;;; and ending points for the first line, and y-coord of last stripe in
;3; the triangle.

(defun draw-big-arrow-shaft-lines-right

(nlines start-x start-y end-x end-y last-y)

;; Set up two counters -- we need to draw two lines at once
(loop for i from O

for i2 from 0 by 2
;3 Find y-coord of ending point of line
for stop-y = (- end-y i)
;; Don’t exceed number of lines in the stripe
while (< i2 nlines)
;3 Don’t go past the bottom of the triangle
while (< last-y stop-y)
;; Draw a line
do (send xdestx ’:show-lines start-x (- start-y i2)
(- end-x i) stop-y)

;3 Draw a second line. The two lines are a refinement
;3 to stagger the endpoints of the lines so the diagonal
;; edge looks neat.
{send xdestx ’:show-lines start-x (- start-y i2 1)

(- end-x i 1) stop-y)))

February 1985

161

February 1985 Program Development Tools and Techniques

:3; The remaining functions draw and stripe one of the small arrows

;33 Function controlling drawing of a small arrow.
;3; Calculates coordinates of the arrowhead and outlines it. Binds x-coord
;33 of the projection of the last stripe onto the top edge. Calculates
;33 the horizontal distance between stripes. When necessary, stripes the
;;: head and shaft of the arrow.
(defun draw-arrow ()
;; Calculate coordinates of arrowhead vertexes
(multiple-value-bind
(*p1xx xply* *p2x* *p2y* Xp5x* *XpSy* *p6xx Xp6yx)
(compute-arrowhead-points)
;; Outline the arrowhead
(draw-outline)
(when xdo-the-stripesx
;3 Bind x-coord of projection of last stripe onto top edge
(let ((xx2*x (- xpOxx xtop-edgex xtop-edgex))
;; Calculate distance between stripes
(xstripe-dx (compute-stripe-d)))
(stripe-arrowhead) ;Stripe head
(stripe-arrow-shaft))))) ;Stripe shaft

;33 Draws the outline of the head of a small arrow.
(defun draw-outline ()
(send xdestx ’:show-lines xp2xx xp2y* Xplxx *plyx
p0xx xpOy *xp6x* XpByx *p5xx Xp5Syx))

162

Program Development Ulilities

;3; Function controlling striping of the shaft of a small arrow.

.ee
IR

; Iterates over the descending triangles that make up the shaft.
; Calculates the coordinates of the top left and bottom right
; vertexes of each triangle. Finds the x-coord of the
; projection of the first stripe onto top edge. Calls

DRAW-ARROW-SHAFT-STRIPES to stripe each triangle.

(defun stripe-arrow-shaft ()
;; Set up a counter for depth. Don’t exceed maximum

.o
9

recursion level.

(loop for shaft-depth from *depthx below *max-depthx

;3 Calculate fractions of new top edge

for top-edge-2 = xtop-edge-2x then (// top-edge-2 2)
for top-edge-4 = (// top-edge-2 2)

;3 Find coords of top left point of triangle

for left-x = xp2xx then (- left-x top-edge-4)

for top-y = *p2yx then (- top-y top-edge-2 top-edge-4)
;3 Find coords of bottom right point of triangle

for right-x = (+ left-x top-edge-2)

for bottom-y = (- top-y top-edge-2)

;3 Find x-coord of projection of first stripe onto top edge

for xoff = (- *pOxx xtop-edgex)
then (- xoff top-edge-2 top-edge-2)
;3 Stripe the triangle
do (draw-arrow-shaft-stripes
left-x top-y right-x bottom-y xoff)))

; Stripes each triangle in the shaft of a small arrow.
; Arguments are coordinates of the top left and bottom right
; points of the triangle, and the x-coord of the projection

;33 of the first stripe onto top edge. Calculates the y-coord
;33 of the starting point and the x-coord of the ending point

oo
292

; of each stripe. Finds number of lines in the stripe. Calls

DRAW-ARROW-SHAFT-LINES to draw the lines in the stripe.

(defun draw-arrow-shaft-stripes

(left-x top-y right-x bottom-y xoff)

;3 Find y-coord of starting point of stripe. Don’t go
;; below the bottom of the triangle.
(loop for start-y from top-y by *stripe-dx above bottom-y

;3 Find x-coord of ending point of the stripe
for end-x downfrom right-x by *stripe-dx
;; Find number of lines in the stripe
for nlines = (compute-nlines (- xoff (- right-x end-x)))
;; Draw a stripe
do (draw-arrow-shaft-lines
nlines left-x start-y end-x bottom-y)))

February 1985

163

February 1985 Program Development Tools and Techniques

;3; Draws the lines in a stripe in the shaft of a small arrow.
33 Arguments are the number of lines in the stripe and the
;3; coordinates of the starting and ending points of the first line.
(defun draw-arrow-shaft-lines
(nlines left-x start-y end-x bottom-y)
;; Set up a counter. Don’t exceed number of lines in the stripe.
(loop for i from 0 below nlines
;; Find x-coord of ending point of the line
for last-x = (- end-x i)
;; Don’t go past the left edge of the triangle
while (< left-x last-x)
;; Draw a line
do (send xdestx ’:show-lines left-x (- start-y i)
last-x bottom-y)))

164

Program Development Ulilities February 1985

165

February 1985 Program Development Tools and Techniques

7. Output Module for the Sample Program

The program used as an example in this document draws the recursive arrow
graphic on the document’s cover. This section contains Lisp code that defines the
flavors and methods that mediate between the program and the system output
operations. For the code that calculates coordinates for the endpoints of the lines
that compose the figure: See the section "Calculation Module for the Sample
Program", page 147. For a reproduction of the LGP graphic the program produces:
See the section "Graphic Output of the Sample Program", page 185.

;; -%- Mode: LISP; Package: (GRAPHICS GLOBAL 1000); Base: 10 -x-
+; Copyright (c) 1983 Symbolics, Inc.

-
»
-
’

#11

This file contains the output module for a program that
reproduces the recursive arrow graphic printed on the covers
of most Symbolics documents. The module allows the graphic
to be produced on a Lisp Machine screen, a Laser Graphics
Printer, or an LGP record file. For each of these devices,
the module produces output by sending appropriate messages
with the coordinates of the endpoints of line segments to
be drawn. This module receives these coordinates from a
separate calculation module.

For screen output, the module creates its own windows. It
defines a basic flavor of window that accepts point
coordinates in the screen coordinate system, with origin

at top left. It defines a more specialized window, built
on the basic window, for use with a calculation module that
uses LGP coordinates, with origin at bottom left. It
allows a process to be associated with each window and

lets users modify the characteristics of the figure.

For LGP output, the module makes an instance of a flavor
with the output stream as an instance variable. Output is
directed to either a hardcopy device or a record file.

This module defines the top-level function, DO-ARROW, that
is called to produce the graphic. This function pops up

a choose-variable-values window to allow users to select the
output device and the characteristics of the figure. The
module defines conditions and handlers for attempts to give
variables impermissible values. '

166

Program Development Utilities

This module determines the size of the figure and its
position within the page or window. It then calls the
function DRAW-ARROW-GRAPHIC in the calculation module.

It passes as arguments the length of the top edge of the
figure and the coordinates of the top right point. The
calculation module sends :SHOW-LINES messages to instances
of output flavors. The arguments tc :SHOW-LINES are the
coordinates of the endpoints of lines to be drawn. The
current instance of the output flavor is the value of the
special variable *DESTx.

1#

;3; Following are declarations for special variables

(defvar xdest-stringx "Screen”
"Destination of program output [Screen, LGP, or File]")

(defvar xoutput-filex nil
"pathname for LGP-record-file output®)

(defvar xfill-proportionx 0.9
"Proportion of smaller dimension to be filled by figure")

;3; The following flavor and its methods are common to both
;3 screen and LGP output

February 1985

167

February 1985 Program Development Tools and Techniques

(defflavor arrow-parameter-mixin
(width height top-edge right-x top-y)
0
(:gettable-instance-variables top-edge right-x top-y)
(:required-methods :compute-width-and-height)
(:documentation :mixin
“Provides parameters for size and position of figure.
" Instance variables hold width and height of page or window;
" length of top edge of figure; and coordinates of top right point
of figure. Methods calculate size and position of figure by
centering it within the page or window and making it fill no
more than the specified proportion of the smaller dimension.
The methods use a coordinate system with origin at bottom left;
other mixins must correct for this if output is going to a
window. Other flavors must also provide a method for calculating
width and height of the page or window. This flavor should be
mixed into any instantiable flavor that produces output for the
arrow graphic.”))

;33 Method controlling calculation of size and position of figure.
;3 Sends messages to self to calculate width and height of page
;33 or window, length of top edge of figure, and coordinates of
;33 figure’s top right point. These are separate methods so that
;3; other flavors can shadow them or add daemons. Another flavor
;33 must provide a method to compute width and height, because
;33 this is specific to the output device.
(defmethod (arrow-parameter-mixin :compute-parameters) ()

;; Another flavor must supply method for width and height

{send self ’:compute-width-and-height)

;; Make a preliminary estimate of length of top edge

(send self ’:compute-top-edge)

;3 Adjust top edge to make it a multiple of 128

(send self ’:adjust-top-edge)

;3 Calculate coordinates of top right point of figure.

;; We can’t do this until we know how long top edge is.

(send self ’:compute-right-x)

(send self ’:compute-top-y))

168

Program Development Ulilities February 1985

;33 Makes a preliminary estimate of length of top edge.
;33 The top edge of the arrow is 80 percent of the horizontal
;33 or vertical length of the whole figure. First finds the
;3; smaller of the length or width of the page or window.
;33 Multiplies this by the proportion of this dimension that
;33 is to be filled by the figure. The result is the
;35 horizontal or vertical length of the figure. Multiplies
;3; this by 0.8 to get the length of the top edge.
(defmethod (arrow-parameter-mixin :compute-top-edge) ()
(setq top-edge
(fixr (x 0.8 xfill-proportionx (min width height)))))

;33 Adjusts length of top edge so it is a multiple of 128.
;3; There are 64 stripes in the head of the large arrow. The
;33 calculation module divides the length of top edge by two
;;; each time it goes down another recursion level. By making
;;; the original top edge a multiple of 128, we maximize
;33 continuity in striping between arrowheads and shafts and
;;; among the first several levels of recursion.
(defmethod (arrow-parameter-mixin :adjust-top-edge) ()
(setq top-edge
;; Minimum length of top edge is 128
(if (< top-edge 256) 128
;; Otherwise set to next lower multiple of 128
(x 128 (fix (// top-edge 128))))))

333 Calculates x-coordinate of top right point of figure.
;3; Finds horizontal length of figure by dividing length of
;35 top edge by 0.8. Centers the figure horizontally within
;3: the page or window.
(defmethod (arrow-parameter-mixin :compute-right-x) ()
(setq right-x
(fixr (x 0.5 (+ width (// top-edge 0.8))))))

;33 Calculates y-coordinate of top right point of figure.
;3; Assumes that the origin is at bottom. Finds vertical
;33 length of figure by dividing length of top edge by 0.8.
;33 Centers the figure vertically within the page or window.
(defmethod (arrow-parameter-mixin :compute-top-y) ()
(setq top-y
(fixr (x 0.5 (+ height (// top-edge 0.8))))))

;;; Following are flavors and methods for screen output

169

February 1985 Program Development Tools and Techniques

(defflavor basic-arrow-window-mixin
(do-stripes max-dep fill-prop)
()

:initable-instance-variables

(:required-flavors arrow-parameter-mixin tv:window)

(:default-init-plist

:edges-from ’:mouse :minimum-width 200 :minimum-height 200

:blinker-p nil :expose-p t)

(:documentation :mixin

"Provides for a basic window to display the arrow graphic.
ARROW-PARAMETER-MIXIN is needed to position the figure within
the window. Instance variables hold values for maximum
recursion level, proportion of window to be filled, and
whether or not to stripe the figure. This flavor assumes
window coordinates, with origin at top left. It provides its
own :COMPUTE-TOP-Y method to use that origin. It provides a
method to find the width and height of the window, as
ARROW-PARAMETER-MIXIN requires. This flavor has a :SHOW-LINES
method to receive point coordinates from the calculation
module and draw lines on the window. It provides a :MAIN-LOOP
method so that the window can run in its own process and let
the user modify the graphic. TV:LIST-MOUSE-BUTTONS-MIXIN is
needed to handle mouse clicks if this method is used. This
flavor provides standard :AFTER daemons for the window-system
:INIT, :REFRESH, and :CHANGE-OF-SIZE-OR-MARGINS messages. This
flavor should be mixed in with ARROW-PARAMETER-MIXIN and
TV:WINDOW for any window that produces the graphic. It
should be included before ARROW-PARAMETER-MIXIN so that the
:COMPUTE-TOP-Y method shadows correctly.”))

170

Program Development Utilities

;3;; Receives endpoint coordinates and draws lines on a window.
;33 Arguments are alternating x- and y-coordinates of the end-
;33 points of lines to be drawn. If there are more than two pairs
;33 of coordinates, assumes that the endpoint of one line is the
;33 starting point of the next. Sends messages for separate methods
;33 to determine the actual coordinates. This is so that other
;33 flavors can modify the coordinates. Draws a line by sending self
;33 a :DRAW-LINE message, and so assumes that TV:GRAPHICS-MIXIN is
;33 included somewhere to provide this method.
(defmethod (basic-arrow-window-mixin :show-Tlines)
(x y &rest x-y-pairs)
;3 First determine the starting point of the line. On
;3 subsequent trips through the loop, the last endpoint
;; becomes the next starting point.
~ (loop for x0 = (send self ’:compute-x x) then X1
for y0 = (send self *:compute-y y) then y1
;3 "Cddr" down the list created by making all but the
;; first pair of coordinates an &rest argument
for (x1 y1) on x-y-pairs by #’cddr
;; Determine the endpoint of the line
do (setq x1 (send self ’:compute-x x1)
y1 (send self ’:compute-y y1))
;3 Draw the line
(send self ’:draw-line
x0 y0 x1 y1 tv:alu-ior t)))

;5 Determines the x-coordinate of an endpoint of a line.
;33 This is a separate method so that other flavors can shadow
;3; it or add daemons to manipulate the coordinate.
(defmethod (basic-arrow-window-mixin :compute-x) (x)
(fixr x))

;;; Determines the y-coordinate of an endpoint of a line.
;33 Assumes that the argument already uses window coordinates,
;33 with origin at top left. This is a separate method so that
;33 other flavors can shadow it or add daemons to manipulate
;3 the coordinate.
(defmethod (basic-arrow-window-mixin :compute-y) (y)

(fixr y))

;53 Finds the inside width and height of the window.
;3; Sends self an :INSIDE-SIZE message, and so assumes that
533 TV:SHEET is included somewhere to provide this
;33 method.
(defmethod (basic-arrow-window-mixin
:compute-width-and-height) ()
(multiple-value (width height)
(send self ’:inside-size)))

February 1985

171

February 1985 Program Development Tools and Techniques

;33 Calculates y-coordinate of top right point of figure.
;33 Finds vertical length of the figure by dividing the length
;;; of top edge by 0.8. Centers the figure vertically within
;3; the window. Gives the result in window coordinates, with
;3; origin at top left. This method shadows that in
;33 ARROW-PARAMETER-MIXIN.
(defmethod (basic-arrow-window-mixin :compute-top-y) ()
(setq top-y
(fixr (x 0.5 (- height (// top-edge 0.8))))))

;;; Calculates size and position of figure after initialization.
+3; Binds the global variable *fill-proportionx to the value of
;3; the corresponding instance variable so that the figure will
;3 be drawn correctly if the value of xfill-proportionx has
;33 changed.
(defmethod (basic-arrow-window-mixin :after :init) (ignore)

(let ((xfill-proportionx fill-prop))

(send self ’:compute-parameters)))

;3; Calculates size and position of figure after window change.
+3; Binds the global variable xfill-proportionx to the value of
;;; the corresponding instance variable so that the figure will
;3 be drawn correctly if the value of *fill-proportionx has
;3 changed.
(defmethod (basic-arrow-window-mixin
:after :change-of-size-or-margins) (&rest ignore)
(let ((xfill-proportionx fill-prop))
(send self ’:compute-parameters)))

172

Program Development Ulilities February 1985

;;; Draws the figure when necessary after window is refreshed.
;3; Binds the global variable xdestx to self and the variables
;3 *do-the-stripesx and *max-depthx to the corresponding instance
;;; variables so the figure will be drawn correctly if the values
;33 of the global variables have changed.
(defmethod (basic-arrow-window-mixin :after :refresh)
(&optional type)
;; Draw figure if not restored from a bit-save array ...
(when (or (not tv:restored-bits-p)
;s ... or size has changed ...
(eq type ’:size-changed)
;3 ... or new values for figure parameters.
(eq type ’:new-vals))
;3 If restored from a bit-save array, clear screen first
(when tv:restored-bits-p
(send self ’:clear-screen))
;3 Bind global variables to self and instance variables
(let ((*xdestx self)
(xdo-the-stripesx do-stripes)
(*max-depthx max-dep))
;; Draw the figure
(draw-arrow-graphic top-edge right-x top-y))))

;33 Provides a mouse documentation line for the window.
;33 The only option is to click right and pop up a
;33 choose-variable-values window of options for changing
;;; the graphic on this window.
(defmethod (basic-arrow-window-mixin
:who-1line-documentation-string) ()
"R: Choose-variable-values options for changing figure on this window")

173

February 1985 Program Development Tools and Techniques

9
..
92
e e
29
.ee
29
IR}
?2
oo
23
IRl
22

Command loop for window associated with a separate process.

; Consists of an error-restart-loop that handles restarts from

errors and sys:abort. Waits for mouse input. If a right

click, pops up a choose-variable-values window to change
characteristics of the figure. On exit, sets instance variables
to the new values and refreshes the window, then waits for another
mouse click. Assumes blips are lists of the form provided

by TV:LIST-MOUSE-BUTTONS-MIXIN.

(defmethod (basic-arrow-window-mixin :main-loop) ()
;3 Run forever in a loop. Offer a restart handler if an error
;3 or sys:abort is signalled.
(error-restart-loop ((error sys:abort) "Arrow Window Top Level”)

;; Wait for input
(let ((char (send self ’:any-tyi)))
;3 Pop up window if input is a list ...
(when (and (listp char)
;s ... and a mouse click ...
(eq (first char) ’:mouse-button)
;5 ... and a single click on the right button.
(eq (second char) #\mouse-r-1))
;3 Bind global variables to instance-variable values
(let ((*do-the-stripes* do-stripes)
(*max-depthx max-dep)
(xfill-proportionx fill-prop))
;3 Pop up a choose-variable-values window
(tv:choose-variable-values
’((*do-the-stripesx "Stripe the arrows?" :boolean)
(*max-depthx "Number of recursion levels” :number)
(xfill-proportionx
"Fraction of window to be filled” :number))
;3 Make the window wide to provide enough room for error
;; messages.
’:extra-width 20
;; Call a function to check for errors when values change
*:function ’check-item
;; Give the user a chance to abort
’:margin-choices ’("Do It"” ("Abort" (signal ’sys:abort)))
*:label "Choose Options for Graphic”)
;; Set instance variables to the new values
(setq do-stripes *do-the-stripesx
max-dep *max-depthx
fill-prop *fill-proportionx)
;3 Recompute size and position of the figure
(send self ’:compute-parameters)
;3 Send :REFRESH message with argument of ’:new-vals to make
;; sure the figure is redrawn if there is a bit-save array
(send self ’:refresh ’:new-vals))))))

174

Program Development Utilities

(defflavor basic-arrow-window ()
(basic-arrow-window-mixin
arrow-parameter-mixin
tv:any-tyi-mixin
tv:list-mouse-buttons-mixin
tv:process-mixin
tv:window)
(:documentation :combination
"Instantiable flavor providing a basic window for output.
Though this flavor is instantiable, its methods assume that
point coordinates use the window coordinate system, with
origin at top left. To work with the current calculation
module it needs another mixin to convert LGP to screen
coordinates. In the component flavors, BASIC-ARROW-WINDOW-MIXIN
must come before ARROW-PARAMETER-MIXIN and TV:WINDOW for
shadowing and daemons to work correctly. TV:PROCESS-MIXIN
and TV:LIST-MOUSE-BUTTONS-MIXIN are not necessary unless the
window is associated with a separate process and the :MAIN-LOOP
method of BASIC-ARROW-WINDOW-MIXIN is the command loop."))

(defflavor lgp-window-mixin
((scale-factor 2.5))
()
(:required-flavors basic-arrow-window)
(:documentation :mixin
"Converts LGP to screen coordinates and vice versa.
When mixed in with BASIC-ARROW-WINDOW, this flavor allows
window output with a calculation module that uses LGP
coordinates. The instance variable SCALE-FACTOR is the
ratio of LGP to screen pixel density. The methods take
the height and width of the window in screen pixels and
calculate the length of the top edge and the coordinates
of the top right point of the figure in LGP pixels. 1In
drawing lines on the window, the methods convert LGP to
window coordinates. These methods shadow those in
ARROW-PARAMETER-MIXIN and BASIC-ARROW-WINDOW-MIXIN."))

;33 Converts x-coord of line endpoint from LGP to screen pixels.
;33 Corrects for higher density of LGP pixels. This method shadows
;35 that of BASIC-ARROW-WINDOW-MIXIN.
(defmethod (1gp-window-mixin :compute-x) (X)

(fixr (// x scale-factor)))

February 1985

175

February 1985 Program Development Tools and Techniques

;3; Converts y-coord of line endpoint from LGP to screen pixels.
;3; Corrects for higher density of LGP pixels and for screen origin
;33 at top left. This method shadows that of BASIC-ARROW-WINDOW-MIXIN.
(defmethod (1gp-window-mixin :compute-y) (y)
(fixr (- height (// y scale-factor))))

;33 Calculates top edge in LGP pixels from screen proportions.
;33 Multiplies length of smaller dimension, in screen pixels, by
;33 proportion of this dimension to be filled by the figure.
;33 Multiplies this by 0.8 to find top edge in screen pixels.
;3: Corrects for higher density of LGP pixels. This method
;33 shadows that of ARROW-PARAMETER-MIXIN.
(defmethod (1gp-window-mixin :compute-top-edge) ()
(setq top-edge
(fixr (x scale-factor 0.8 xfill-proportionx
(min width height)))))

;33 Calculates x-coord of top right point in LGP pixels.
;33 Finds horizontal length of figure in screen pixels by
;33 dividing top edge by 0.8. Centers figure horizontally
;33 in window, correcting for higher density of LGP pixels.
;33 This method shadows that of ARROW-PARAMETER-MIXIN.
(defmethod (1gp-window-mixin :compute-right-x) ()
(setq right-x
(fixr (x 0.5 (+ (x width scale-factor)
(// top-edge 0.8))))))

;3; Calculates y-coord of top right point in LGP pixels.
;33 Finds vertical length of figure in screen pixels by
;33 dividing top edge by 0.8. Centers figure vertically
;33 in window, correcting for higher density of LGP pixels.
;33 This method shadows those of ARROW-PARAMETER-MIXIN and
+33 BASIC-ARROW-WINDOW-MIXIN.
(defmethod (1gp-window-mixin :compute-top-y) ()
(setq top-y
(fixr (x 0.5 (+ (x height scale-factor)
(// top-edge 0.8))))))

(defflavor arrow-window ()
(1gp-window-mixin basic-arrow-window)

(:documentation :combination

"Instantiable flavor for window output from LGP coordinates.
This flavor has all the features of BASIC-ARROW-WINDOW but
assumes that the calculation module uses LGP coordinates. This
is the flavor to instantiate for window output using the
current calculation module.”))

176

Program Development Utilities

The following flavor and methods are for LGP output

(defflavor lgp-pixel-mixin

(
(

(output-stream)
0
initable-instance-variables
:required-flavors arrow-parameter-mixin)
:documentation :mixin
"provides methods for arrow graphic output on an LGP stream.

ARROW-PARAMETER-MIXIN is required to calculate the size of the
figure and position it in the center of the page. This flavor

’

has a method to calculate the width and height of the page, as

ARROW-PARAMETER-MIXIN requires. It has a :SHOW-LINES method to
receive point coordinates from the calculation module and draw
lines on the output stream. The method assumes that coordinates
are in LGP pixels. The method also assumes that flavor
LGP:BASIC-LGP-STREAM is included in output stream to provide
:SEND-COMMAND and :SEND-COORDINATES messages. This flavor
should be mixed, along with ARROW-PARAMETER-MIXIN, into an
instantiable flavor for LGP output. When that flavor is
instantiated, the instance variable output-stream should be

ini

tialized."))

; Receives endpoint coordinates and draws lines on LGP stream.
; Arguments are alternating x- and y-coordinates of endpoints of

53; lines to be drawn. If there are more than two pairs of

; coordinates, assumes that the endpoint of one line is the
; starting point of the next. Draws a line by sending output
; stream :SEND-COMMAND messages for LGP commands and

;33 :SEND-COORDINATE messages for LGP coordinates. Assumes that

oo
29

flavor LGP:BASIC-LGP-STREAM is included in output stream to
provide these methods.

(defmethod (1gp-pixel-mixin :show-1lines)

(x0 y0 &rest x-y-pairs)
; Send command and coordinates to start drawing lines

(send self ’:send-command-and-coordinates #/m x0 y0)

3
»

(

;3 “Cddr” down the list created by making all but the first

; pair of coordinates an &rest argument
loop for (x y) on x-y-pairs by #’cddr
;; Send command and coordinates to draw a line
do (send self ’:send-command-and-coordinates #/v x y)))

February 1985

177

February 1985 Program Development Tools and Techniques

:;; Sends line-drawing commands to LGP output stream.

;33 :SEND-COMMAND transmits an LGP command. :SEND-COORDINATES

; transmits coordinates of an endpoint of a line to be drawn.

;35 Assumes that LGP:BASIC-LGP-STREAM is included in output stream

;3; to provide these methods.

(defmethod (1gp-pixel-mixin :send-command-and-coordinates) (cmd x y)
(send output-stream ’:send-command cmd)
(send output-stream ’:send-coordinates (fixr x) (fixr y)))

;3; Finds width and height of a page for LGP output.
;33 This flavor is required by ARROW-PARAMETER-MIXIN. Finds the
;33 values of two instance variables of LGP:BASIC-LGP-STREAM:
333 SI:PAGE-WIDTH and SI:PAGE-HEIGHT. Assumes that
;33 LGP:BASIC-LGP-STREAM is included in output stream to provide
;;; these instance variables.
(defmethod (1gp-pixel-mixin :compute-width-and-height) ()
(setq width (symeval-in-instance output-stream ’si:page-width)
height (symeval-in-instance output-stream ’si:page-height)))

(deffiavor lgp-pixel-stream ()
{1gp-pixel-mixin arrow-parameter-mixin)
(:documentation :combination
"Instantiable flavor for arrow output on LGP stream.

Assumes that the calculation module uses LGP coordinates.
When this flavor is instantiated, the LGP-PIXEL-MIXIN
instance variable OUTPUT-STREAM should be initialized.
The output stream can be directed to an LGP or a file,
but it must include flavor LGP:BASIC-LGP-STREAM for
output to work correctly.”))

;;; Following are condition flavors for bad variable values

(defflavor bad-arrow-variable () (error)

(:documentation

“Noninstantiable class of bad-variable conditions.
The user might set some variables to impermissible values.
These conditions are to permit checking for bad values
beyond the system’s error checking. Instantiable condition
flavors for specific variables should be built on this
flavor.”))

178

Program Development Ulilities

(defflavor bad-arrow-depth () (bad-arrow-variable)

(:documentation

"Proceedable condition: bad value for *MAX-DEPTHx.
An instantiable condition flavor for impermissible values
of *MAX-DEPTHx, the number of recursion levels in the
figure."))

;33 Prints string on stream to report bad *MAX-DEPTHx value
(defmethod (bad-arrow-depth :report) (stream)
(format stream "No. of levels was not a ~
nonnegative fixnum."))

;33 Proceed type method for supplying new value of *MAX-DEPTHx
(defmethod (bad-arrow-depth :case :proceed :new-depth)
(&optional (dep (prompt-and-read
* :number
"Supply new value for ~
no. of recursion levels: ")))
"Supply a new value for number of recursion Tevels."”
(values ’:new-depth dep))

(defflavor bad-arrow-fill-proportion () (bad-arrow-variable)
(:documentation
"Proceedable condition: bad value for *FILL-PROPORTIONx.
An instantiable condition flavor for impermissible values of
xFILL-PROPORTION*, the fraction of the smaller dimension of
the page or window that the figure is to fill."))

;33 Prints string on stream to report bad *FILL-PROPORTIONX value.

(defmethod (bad-arrow-fill-proportion :report) (stream)
(format stream "Proportion was not a fraction between ~
0 and 1."))

;33 Proceed type method for new value of XFILL-PROPORTIONX
(defmethod (bad-arrow-fill-proportion :case :proceed
:new-proportion)
(&optional (prop (prompt-and-read
* :number
"Supply new fraction of bounds ~
be filled: ")))
"Supply a new fraction of page or window to be filled.”
(values ’:new-proportion prop))

;33 Top-level function

February 1985

179

February 1985 Program Development Tools and Techniques

; Top-level function to call to produce arrow graphic.

; Pops up a choose-variable-values window to let user specify
; output destination, number of recursion levels, proportion
; of smaller dimension of page or window to be filled, and

; whether or not to stripe figure. If screen output, makes a
; window. If LGP output, makes an LGP stream and calls

DRAW-ARROW-GRAPHIC to draw the figure.

(defun do-arrow ()
;3 Pop up a choose-variable-values window
(tv:choose-variable-values

*((*do-the-stripesx "Stripe the arrows?" :boolean)
(*max-depth* "Number of recursion levels” :number)
(xfill-proportionx

“Fraction of page or window to be filled"” :number)
(xdest-stringx "Output destination”
:choose ("Screen” "LGP" "File"))
(xoutput-filex "Pathname for file output” :pathname))

;; Make window wide enough to accommodate long pathnames

;; and error messages

’:extra-width 20.

;; Call this function when a value is changed

*:function ’check-item

;3 Give user a chance to abort

*:margin-choices ’("Do It" ("Abort" (signal ’sys:abort)))

’:1abel "Choose Options for Graphic")

180

Program Development Ulilities

;3 If figure is infinitely small, just return nil
(cond ((= *fill-proportionx 0) nil)
;3 If screen output, make a window
((equal *dest-stringx “Screen”)
(tv:make-window ’arrow-window
;; Initialize instance variables to
;; values set by the user
’:do-stripes *do-the-stripesx
’ :max-dep *max-depthx
*:fill-prop xfill-proportionx
;3 Specify top-level function for the
;; process associated with the window
’:process ’(window-1oop)))
;3 If LGP or file output, use an appropriate stream
(t (with-open-stream
(stream
;3 This function returns a stream suitable for
;3 LGP output
(si:make-hardcopy-stream
;; Argument is the output device. For LGP,
;3 use the default hardcopy device.
(if (equal xdest-stringx "lIgp")
si:xdefault-hardcopy-devicex
;; For file output, use the correct format
;; for the hardcopy device and direct
;3 output to the file specified by the user
{1gp:get-1gp-record-file-hardcopy-device
xoutput-filex))))
;; Make an instance of our LGP output flavor
(let ((*xdestx
(make-instance ’1gp-pixel-stream
;; Initialize instance
;; variable to output stream
’:output-stream stream)))
;3 Position the figure on the page
(send *xdestx* ’:compute-parameters)
;3 Draw the figure, using instance-variable values
;; as arguments
(draw-arrow-graphic (send *destx ’:tcp-edge)
(send xdestx ’:right-x)
(send xdestx ’:top-y)))))))

February 1985

181

February 1985 Program Development Tools and Techniques

;33 Top-level function for process associated with arrow window.
;33 The function is called when the window is created. Argument is
;33 the window. The function sends the window a :MAIN-LOOP message.
;33 This method should be the actual command loop for the process.
(defun window-loop (window)

(send window *:main-loop))

;33 Function to check variable values

;33 Called when a value changes in choose-variable-values window.
;;; Arguments are the window, the variable, and its old and new values.
;33 Binds handlers for conditions for impermissible values. If new
;33 value is OK, sets variable to the new value, refreshes window, and
;33 returns t. If value is not OK, signals the appropriate condition.
;;; When SIGNAL returns, presumably with a new variable value, checks
;;; the new value in the same way it checks a new value that comes
;33 from the window.
(defun check-item (cvv-window var old-val new-val)
;3 We don’t use the old value. To avoid a compiler complaint,
;3 Jjust evaluate it and ignore it. HWe could also use IGNORE
;3 instead of OLD-VAL in the arglist, but then the arglist
;3 would be less meaningful.
old-val
;; Bind handlers for the conditions we might signal
(condition-bind ((bad-arrow-depth ’bad-arrow-var-handler)
(bad-arrow-fill-proportion
’bad-arrow-var-handler))
(when (eq var ’xmax-depthx)
;3 XMAX-DEPTHx must be nonnegative fixnum
{loop until (and (fixp new-val) (> new-val 0))
;3 If it’s not, bind QUERY-IO to the window and
;; signal a condition. SIGNAL should return
two values, the proceed type and the new
value from the proceed method. Ignore the
; proceed type and set NEW-VAL to the new
;3 value.
do (let ((query-io cvv-window))
(multiple-value (nil new-val)
(signal ’bad-arrow-depth)))))

182

Program Development Ulilities February 1985

(when (eq var ’xfill-proportionx)
;3 XFILL-PROPORTIONx must be between 0 and 1
(Toop until (and (2 new-val 0) (< new-val 1))
;3 If it’s not, bind QUERY-IO to the window and
;; signal a condition. SIGNAL should return
;3 two values, the proceed type and the new
;; value from the proceed method. Ignore the
;3 proceed type and set NEW-VAL to the new
;; value.
do (let ((query-io cvv-window))
(multiple-value (nil new-val)
(signal ’bad-arrow-fill-proportion)))))
;; Variable value is now OK. Set variable to the new value.
;; Note that we DO want to evaluate VAR.
(set var new-val)
;; Refresh the window
(send cvv-window ’:refresh)
;; Return t
t))

;;; Handler for bad-variable-value conditions

183

February 1985 Program Development Tools and Techniques

;;; Handler for bad value of x*MAX-DEPTHx or xFILL-PROPORTIONx.
;33 Argument is the condition object created by SIGNAL. Uses QUERY-IO
;;; Stream to report condition. Sends the condition object a :PROCEED
;3; message and passes back the values it returns.
(defun bad-arrow-var-handler (cond-obj &aux bl)
;3 Find out whether this object has the right proceed type.
;3 If not, return nil.
(if (send cond-obj ’:proceed-type-p
(cond ((typep cond-obj ’bad-arrow-depth) ’:new-depth)
((typep cond-obj ’bad-arrow-fill-proportion)
’:new-proportion)))
;; Enclose the handling operation in an UNWIND-PROTECT so that
+; if we use a blinker we are sure to turn it off
(unwind-protect
(progn
;; Use a blinker if the QUERY-IO stream is a window
(setq bl (if (typep query-io ’tv:sheet)
;3 If a cursor-following blinker exists, use it
(or (tv:sheet-following-blinker query-io)
;; Otherwise, make a new blinker
(tv:make-blinker query-io
*tv:rectangular-blinker
*:follow-p t))))
;; If a blinker, make it blink
(if bl (send bl ’:set-visibility ’:blink))
;3 Alert the user
(tv:beep)
;; Send a report, presumably describing the condition
(send cond-obj ’:report query-io)
;3 Send object a :PROCEED message and return the values
;; that the method returns
(send cond-obj ’:proceed
(cond ((typep cond-obj ’bad-arrow-depth) ’:new-depth)
((typep cond-obj ’bad-arrow-fill-proportion)
’ :new-proportion))))
;; If a blinker, turn it off
(if bl (send bl ’:set-visibility nil)))))

;33 This macro expression causes combined methods to be compiled at

;3; compile time and data structures to be generated at load time.

;33 Otherwise, these things happen at run time, when the first

;;; instance of a flavor is made.

(compile-flavor-methods arrow-window lgp-pixel-stream
bad-arrow-depth bad-arrow-fill-proportion)

184

Program Development Ulilities Febr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>